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i Dansk resumé 
i.1 Baggrund og formål 
Formålet med at undersøge udbredelsen af mikroplast (plaststykker mellem 1 µm og 5 mm) i havmiljøet er at 
forbedre den viden, der er nødvendig for at vurdere miljøtilstanden mht. hertil, og herigennem skabe grundlag 
for at kunne arbejde hen imod en god miljøtilstand for havområder. God miljøtilstand, med hensyn til 
mikroplast, er defineret således, at sammensætning, mængde og rumlig fordeling af mikroplast i vandsøjlen og 
i havbundens sediment er på niveauer, der ikke skader kyst- og havmiljøet. Der mangler dog tilstrækkelig viden 
på området, som dette forskningsprojekt vil bidrage til at opnå. Der mangler blandt andet viden om det 
metodiske grundlag for at opnå repræsentativ prøveudtagning i havmiljøet og viden om sammenligneligheden 
af metoder til oprensning, analyse og fortolkning af udtagne prøver. Projektet adresserer denne mangel på 
viden og har til formål at belyse analytiske og metodiske problemstillinger vedrørende mikroplast i sediment 
og at sammenligne prøveudtagningsmetoder vedrørende mikroplast i vandsøjlen. 

 

i.2 AP 1 – Repræsentativ prøvetagning til statistisk pålidelig vurdering af mikroplast i marine 
sedimenter 

Med afsæt i ovenstående er det et formål med Miljøstyrelsens overvågning af marint mikroaffald (microlitter) 
at skabe viden om variationen af mikroplast i dansk havsediment, både hvad angår koncentration, 
partikelstørrelser og polymertyper. Herved er intentionen at skabe grundlag for at vurdere, hvordan og hvor 
store prøver der skal udtages, for med en given statistisk sikkerhed at kunne oplyse om tilstedeværelsen af 
mikroplast i forskellige størrelsesfraktioner og polymertypefraktioner. En sådan vurdering vil afhænge af den 
faktiske sammensætning og koncentration i sedimentet, den faktiske mikroplast inhomogenitet i en 
sedimentprøve, samt analyseteknikken anvendt til kvantificering. Formålet med AP1 er at vurdere dette 
eksperimentelt på et sæt af marine sedimentprøver. 

i.2.1 Udfordringer 
Et af formålene med dansk overvågning af mikroplast er at skabe viden om niveauet af mikroplast i dansk 
havsediment og dets udbredelse. I den forbindelse er det væsentligt at kende usikkerhederne, der er forbundet 
hermed. Den samlede usikkerhed på et datapunkt i felten bliver den kombinerede usikkerhed relateret til flere 
problemstillinger: 

− prøveudtagning i felten 
− delprøvetagning af den indsamlede prøve i laboratoriet 
− ekstraktion af mikroplast 
− analysere mikroplast. 

Spørgsmålet opstår nu, hvor store disse individuelle usikkerheder er, og hvilke der dominerer den samlede 
usikkerhed. Usikkerheden relateret til repræsentativ lokal prøvetagning i felten er adresseret i Liu et al. (2022; 
in prep), mens de tre sidstnævnte adresseres i denne arbejdspakke. 

i.2.2 Metode 
Der blev indsamlet ca. 20 kg vådt sediment fra fire stationer på en strækning af 50-100 m (Figur 1). Sedimentet 
blev opsamlet i hver sin metalspand og derefter analyseret på Aalborg Universitet. Mikroplastet kan forventes 
at have været inhomogent fordelt i de 20 kg prøve i metalspanden. Den bestemte koncentration vil derfor 
variere afhængigt af f.eks. hvor meget delprøve der udtages og hvor meget der analyseres. Variabilitet blev 
vurderet ved at udtage delprøver med et rør af rustfrit stål i hele spandens dybde og derpå analysere de enkelte 
delprøver. Der blev analyseret seks delprøver på hver ca. 500 g vådvægt fra hver af spandene. Tørvægten af 
delprøverne varierede mellem 94 og 232 g (Tabel 3).  
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Figur 1. Lokaliteter for udtagning af sediment til laboratorieforsøg 

 

 

Figur 2. Udtagning af delprøver med stålrør 

Prøveforberedelse, dvs. koncentrering af mikroplast i en væske (et koncentrat) der kan analyseres kemisk, såvel 
som den efterfølgende kemiske analyse blev gennemført som beskrevet i Liu et al. (2022). 
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Effektiviteten af ekstraktionen blev vurderet individuelt for hver af de fire gange seks delprøver. Dette blev 
gjort ved at tilsætte et kendt antal let identificerbare mikrokugler af plast til delprøven før ekstraktion og 
kontrollere, hvor mange af dem der kunne findes efter den fulde ekstraktion.  

i.2.3 Resultater 
Uden at korrigere resultaterne for genfinding inden for de enkelte delprøver, og uden at korrigere dem for 
blindværdier, varierede koncentrationerne i de fire prøver fra 3204 til 10296 partikler kg-1, svarende til 370 til 
1866 µg kg-1 (Figur 3, Figur 4). I en anden undersøgelse har Liu et al. (in prep) kvantificeret mikroplast i 19 
sedimentprøver fra forskellige dele af det danske havmiljø og fundet 119 til 23340 partikler kg-1, svarende til 5 
til 6958 µg kg-1. Prøverne indsamlet til nærværende undersøgelse lå derfor indenfor, hvad der tidligere er blevet 
fundet for andre danske marine sedimenter. 

 

Figur 3. Mikroplastkoncentrationer som partikler pr. kg tørt sediment i de fire undersøgte prøver 
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Figur 4. Mikroplastkoncentrationer som masse pr. kg tørt sediment i de fire undersøgte prøver 

Hver af de 24 delprøver blev analyseret med mindst 3 scanninger. Koncentration pr. delprøve blev beregnet 
ved at tage et gennemsnit af værdien fra alle scanninger af denne delprøve. Variationer mellem delprøver var 
ret udtalte både med hensyn til antal (Figur 5) og massekoncentrationer (Figur 6). For flere af prøverne var den 
indbyrdes afvigelse mellem de mindst tre scanninger pr. delprøve sammenlignelig med variabiliteten mellem 
de enkelte delprøver udtaget fra spanden. Forskellen i variabilitet delprøverne imellem og scanninger imellem 
var mest udtalt ved måling af mikroplast som masse sammenlignet med tællinger. Gennemsnitsværdien pr. 
delprøve varierede ca. en faktor 0,5-3 for koncentrationer målt som antal mikroplastpartikler (Figur 5), og 
endnu mere når de blev målt som masse (Figur 6). For sidstnævnte viste FYNLunkebugt4 langt den største 
variation mellem middelværdier. 
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Figur 5. Variation på mikroplast antal koncentration mellem delprøverne. Kolonnerne viser gennemsnitsværdien mellem scanninger. 
Fejlbjælkerne viser standardafvigelsen mellem scanninger. 

  

Figur 6. Variation på mikroplast masse koncentration mellem delprøverne. Kolonnerne viser gennemsnitsværdien mellem scanninger. 
Fejlbjælkerne viser standardafvigelsen mellem scanninger. 

Den kemiske analyse af en prøve indebærer flere usikkerheder delprøvetagning og antallet af scanninger af 
ekstraktet. En væsentlig usikkerhed relaterer sig til effektiviteten af prøvebehandlingsprotokollen. For at 
vurdere størrelsen heraf blev genfindingen bestemt. Genfindingen varierede mellem stationer såvel som 
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mellem delprøver fra samme station (Figur 7). Den højeste genfinding blev fundet i station ARH170006 med et 
gennemsnit på 93%. 

  

Figur 7. Genfindingsrate for de fire stationer per delprøve  

Der blev endvidere analyseret for blindværdier (blankprøver), der dog viste en ganske beskeden forurening af 
prøverne i forhold til de målte koncentrationer. 

 

i.2.4 Diskussion 
Variabiliteten blev målt ved den relative standardafvigelse i procent i forhold til gennemsnittet, således at 
variabiliteten er sammenlignelig på tværs af prøver med divergerende resultater. Den relative variabilitet 
mellem delprøver og den relative variabilitet mellem individuelle scanninger var af samme størrelsesorden. 
Absolutte koncentrationer varierede dog mærkbart mellem delprøverne. Forøgelse af antallet af scanninger pr. 
delprøve vil give en mere sikker analyse, men ikke nødvendigvis ændre gennemsnitsværdierne meget. Derfor 
er det ikke sandsynligt, at analyse af blot én delprøve, sammen med at øge antallet af scanninger, vil flytte den 
bestemte koncentration tættere på sandheden, her defineret som gennemsnitsværdien af alle analyserede 
delprøver. 

Dette leder til, at antallet af analyserede delprøver har betydning for at opnå et mere sikkert estimat for 
mikroplastkoncentrationen. Samtidig skal en væsentlig del af ekstraktet scannes for at forbedre præcisionen 
af delprøveanalysen. Desværre fører dette til en tilgang, hvor indsatsen for at analysere en enkelt prøve bliver 
ganske betydelig. Nuværende praksis hos Aalborg Universitet er at analysere én delprøve ved at anvende op 
til tre scanninger. At øge dette til at analysere for eksempel seks delprøver ville seksdoble 
analyseomkostningerne. Det er billigere at øge antallet af scanninger, selvom der også er grænser for dette. 
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Det ville i princippet være ideelt at scanne hele ekstrakten fra en delprøve. En fuldstændig oprensning af marine 
sedimentprøver er imidlertid ikke mulig, og forstyrrende materiale (partikler) vil være til stede selv efter 
omfattende prøveforberedelse. Dette betyder, at der kun kan deponeres små portioner af ekstrakt pr. scanning, 
hvilket så betyder, at mange scanninger ville være nødvendige for at kemisk analysere hele ekstraktet. Der er i 
praksis grænser for, hvor mange scanninger der kan laves, da hver scanning kræver en del maskintid og dermed 
ressourcer. 

Konfidensen på bestemmelsen af mikroplastindholdet ved analysen af de store sammensatte prøver i 
nærværende undersøgelse var væsentligt mindre end usikkerheden på prøveudtagning inden for et område 
som rapporteret af Liu et al. (2022; in prep), der undersøgte variationer i to områder, der hver dækkede ca. 1 
km2. Set i dette lys vil det ikke give mening at øge den analytiske nøjagtighed og præcision uden også at øge 
repræsentativiteten af prøveudtagningen. 

Forudsat de relative usikkerheder i denne undersøgelse og undersøgelserne af Liu et al. (2022; in prep) holder, 
er den største usikkerhed prøvetagning i felten, der synes at være den langt største potentielle kilde til 
usikkerhed, idet der er stor lokal variation over korte afstande. En repræsentativ prøve kræver derfor mange 
nedstik over det areal, der ønskes repræsenteret. Delprøvetagning af den indsamlede prøve i laboratoriet kan 
medføre en del usikkerhed, da komplekse matricer som sedimenter er svære at homogenisere, og ekstraktion 
af mikroplastet, kemisk analyse herfor og blankforurening kan alle være vigtige kilder til usikkerhed, men synes 
mindre tilbøjelige til at dominere sammenlignet med prøvetagningsusikkerheder. 

Dette leder til en diskussion om, hvordan den totale usikkerhed for mikroplastkvantificering bedst minimeres 
med henblik på overvågning i marine sedimenter. Naturligvis skal der lægges vægt på prøvetagning, men også 
det, der sker i laboratoriet, når prøven er indsamlet, spiller en stor rolle. Samtidig skal der tages hensyn til de 
hertil forbundne omkostninger, idet prøvetagnings- og analysesikkerhed i høj grad er et spørgsmål om hvor 
mange ressourcer, der lægges i opgaven.  

Selvom skibstiden er dyr, er det umagen værd at investere ressourcer i at tage en sammensat prøve, der på 
systematisk vis dækker det areal der ønskes repræsenteret ved prøvetagningen. Et bud på en pragmatisk 
tilgang for marin overvågning kunne være at udføre nedstik på 5 steder jævnt fordelt indenfor et 1×1 km 
kvadrat. Prøverne bør udtages med uforstyrret overflade. På hvert sted kunne der udtages cirka 1 L sediment 
fra de øverste 2 cm af sedimentlaget. Disse 5×1 L sediment samles til én prøve, der repræsenterer den givne 
lokalitet.  

Desuden er det umagen værd at optimere delprøvetagningen i laboratoriet. I princippet ville det være at 
foretrække at analysere mange individuelle delprøver, men dette øger omkostningerne proportionalt med det 
antal delprøver, der skal analyseres. Derfor kan det være mere hensigtsmæssigt at tage en pragmatisk tilgang, 
for eksempel at tage mange små kerner fra en større prøve, blande dem og derefter lade én prøve gå til analyse. 
Et bud på en sådan tilgang kunne være: Bland de 5 L prøve grundigt i en passende beholder; Udtag jævnt 
fordelte delprøver i hele  sedimentets tykkelse med fx et 30 mm rør; Udtag tilstrækkeligt mange delprøver til 
der er taget cirka 0,5 L vådt sediment.   

Med hensyn til den kemiske analyse vil det sandsynligvis være umagen værd at øge antallet af scanninger så 
en større del af prøven bliver scannet, selvom dette vil øge omkostningerne lidt. Et pragmatisk bud kunne være 
at scanne 3 delprøver, og addere resultaterne fra disse til ét resultat. Mængden der kan analyseres i ét scan, 
afhænger af hvor godt sedimentet kunne oprenses, og det tilstræbes at scanne 10% af den samlede prøve, dog 
ikke flere end maksimalt 5 scanninger.   

For at imødegå problemer ved bestemmelse af de mindste og største stykker mikroplast, kunne data 
afrapporteres som antal og masse koncentration i størrelsesintervallerne 10-20, 20-50, 50-100, 100-300, 300-
1000 og 1000-5000 µm. 
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i.3 AP 2 – Evaluering af analysemetoder for mikroplast i sedimenter 
Formålet med arbejdspakke 2 er at undersøge præcision og nøjagtighed af kvantificering ved forskellige 
analysemetoder anbefalet af OSPAR/HELCOM og JRC/EU TGML til marin overvågning af mikroplast i f.eks. 
sedimenter. Disse spænder fra relativt simple metoder til de mere præcise metoder, der er tilgængelige for 
forskning. Dette løses eksperimentelt ved at sammenligne en af de mest avancerede analysemetoder, der 
muliggør kemisk identifikation af partikler i en prøve, med en 'simplere' tilgang, der udelukkende er rettet mod 
identifikation af, om en partikel tilhører materialegruppen mikroplast. 

 

i.3.1 Screeningsanalyse baseret på Nile Red-farvning for store mikroplastpartikler 
i.3.1.1 Baggrund 
Forskellige analyseteknikker er i spil til måling af mikroplast. Ofte identificeres de større fraktioner (> 300 μm) 
visuelt ved optisk mikroskopi, hvilket er en besværlig og ret subjektiv metode med høj risiko for falsk 
identifikation. Det er blevet foreslået, at hurtigere screeningsmetoder der bruger farvningsteknikker og 
fluorescensmikroskopi kan forbedre den visuelle identifikation af plastpartikler, som efterfølgende kan 
suppleres med kemisk bestemmelse af plasttype (f.eks. FTIR-analyse). Sådan screeningsstrategi er blevet 
foreslået som en potentiel overvågningsmetode af OSPAR og HELCOM havkonventionerne. Nile Red (NR) er et 
farvestof der kan bruges i denne sammenhæng, og dens anvendelse har været demonstreret med succes. NR 
adsorberes på polymeroverfladen og kan fluorescere under visse lysforhold, hvilket hjælpe med at skelne 
plastpartikler fra naturligt materiale.  

NR-farvningsmetoder kræver stadig et element af visuel identifikation under et mikroskop, idet farvestoffet 
hjælper med at identificere plastpartikler, men også markerer naturligt organisk materiale. Signalet fra 
naturligt organisk materiale adskiller sig lidt fra plast, men der er stadig en risiko for fejlidentifikation. Det 
betyder, at der er behov for yderligere metodeudvikling til denne farvningsteknik, såsom udvikling af en 
automatiseret protokol til sortering af plast fra organisk materiale ved hjælp af det fluorescerende signal; samt 
brug af computerbaserede løsninger til polymersortering og deres antal og størrelsesfordeling.  

En omkostningseffektiv metode kunne benytte et digitalkamera til at tage det fluorescerende billede og 
automatisk billedbehandling til at bestemme, hvilke partikler der er mikroplast. Denne tilgang blev undersøgt 
i arbejdspakken og kombinerer digitalkamera og billedbehandling til en screeningsanalyse af mikroplast ved 
hjælp af Nile Red-farvning. Metoden giver betydelige fordele for en mere automatiseret metode, øger 
analysehastigheden og forbedrer kvaliteten af visuel identifikation af mikroplast. En protokol og en fotoboks 
blev udviklet, og det blev vurderet, at denne tilgang i høj grad kan gavne overvågningsaktiviteter på storskala 
prøvepuljer. Resultaterne fra studiet blev brugt til at starte udviklingen af en automatisk metode til 
identifikation af større mikroplastpartikler ved differentiering af plastpartikler fra naturlige partikler. Her 
fokuserede vi hovedsageligt på partikler > 1 mm, selvom det er muligt for mindre partikler.  

 

i.1.1.1 Metode 
I denne undersøgelse blev 0,01 mg mL-1 NR i etanol forberedt og påført et stålfiltersystem indeholdende 
mikroplastpartikler > 1 mm (PE, PP, PET og PA) med en blanding af tilsatte organiske materialer (havplanter, 
træ, proteiner, osv.), der virkede som interfererende partikler. Filtersystemet (Figur 8) blev anbragt i en 
petriskål, og inkuberet i NR-opløsningen. 
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Figur 8. Stålfiltersystem brugt til Nile Red-farvning. Filteret er placeret i midten af to metalkamre med en gummi O-ring tætning 

Indledende tests blev udført for at bestemme forholdene hvor polymeren blev fremhævet mest muligt på en 
mørk baggrund. Der blev bygget en fotoboks af træ til billedoptagelse (Figur 9). Blåt og UV-lys blev evalueret 
for excitation, og både orange og røde filtre blev brugt til at tælle NR-emissionssignalet.  

Herefter blev en automatisk metode til screening evalueret, der kombinerede billedbehandling med 
billedsegmentering og objektmåling. Forskellige farvemodeller blev evalueret til billedbehandling for at skelne 
plasten fra interfererende partikler. Farvemodeller er matematiske beskrivelser af, hvordan farver kan 
repræsenteres ved tal, typisk som tre værdier. Strategien blev valideret på en marin sedimentprøve taget øst 
for Skagen, Danmark. 

 

Figur 9. Fotoboks-prototype (indvendigt) til optagelse af Nile Red-farvet mikroplastbilleder 

 

i.1.1.2 Resultater og diskussion 
Indledningsvis blev betingelserne under hvilke billederne skulle tages undersøgt. Flere kriterier blev evalueret, 
og tre hovedfaktorer identificeret for at opnå optimalt fluorescenssignal: Lyskilde, filter og lukkerhastighed. I 
en første vurdering viste blåt lys sig bedst til at fremhæve polymerpartikler, mens det orange filter var bedst til 
at differentiere dem fra organisk materiale. Desuden gav lukkerhastighed på 0,5 sekunder passende kontrast 
mellem partiklerne og baggrunden (Figur 10).  
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Figur 10. Visuelle og Nile Red-farvede billeder af PA, PE, PET og PP-partikler. De fluorescerende billeder blev opnået med blåt lys ved 
hjælp af røde og orange filtre og anvendelse af forskellige lukkerhastigheder. Billedet fremhævet med rødt blev valgt til yderligere 
billedbehandling 

To forskellige farvemodeller blev undersøgt: RGB og HSV. Sidstnævnte er et alternativ til den almindelige RGB-
model. Figur 11 giver et eksempel på farvekanalerne for RGB- og HSV-farvemodellerne. 

 

Figur 11. Nile Red-farvet billede dekomponeret i tre farvekanaler til RGB- og HSV-farvemodeller 

Figur 11 viser, at hver farvekanal har forskellig information fra det visuelle billede, hvor farvelinjen (til højre for 
hvert billede) refererer til farveintensiteten. Nogle farvekanaler, f.eks. Red og Value er ens med organisk 
materiale klart synligt. På den anden side demonstrerede Hue, at polymerinformationen er fremherskende, i 
modsætning til Blue og Saturation. Ses nærmere på Hue-kanalen for yderpunkter, kan polymerpartiklerne 
endda fremhæves ved blot at fjerne dem. Dette kan følges ved at vælge en pixelværditærskel for 
billedsegmentering, som vist i Figur 12. Dette fremhæver vigtigheden af at undersøge ekstremværdier, når man 
har at gøre med digitale billeder, hvilket er relateret til kamerasensoren og farvemodeltransformationen. 
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Figur 12. Visualisering af afvigende pixels og billedsegmentering på Hue-farvekanalen af et Nile Red-farvet billede 

Et par billedbehandlingstrin tillader billedsegmentering, adskillelse af målpartikler fra baggrunden og 
interfererende elementer. Dette kan forbedre den visuelle analyse af mikroplast væsentligt ved at udpege 
partikler, der bør valideres kemisk. Denne automatiserede strategi blev anvendt på en sedimentprøve (Figur 
13). De udvalgte partikler blev manuelt frasorteret og valideret kemisk ved hjælp af FTIR. Partiklerne blev 
positivt identificeret som plastik, og de var PE, PVC og malingsflager. For mørkfarvede polymerer var det 
udfordrende at blive opdaget ved brug af Nile Red. Samme for mindre partikler uden høje 
forstørrelsesopsætninger. Dette demonstrerer metodens anvendelse til at sortere plastikpartiklerne fra 
interfererende materialer. 

 

Figur 13. Automatiseret billedbehandling ved hjælp af Nile Red påført en sedimentprøve (Skagen, DK) 

Den automatiserede billedprocestilgang forbedrer den visuelle analyse af store mikroplastpartikler (> 1 mm), 
som stadig er den mest almindelige procedure til partikelidentifikation. Screeningsstrategien reducerer bias og 
falsk positive rater ved udvælgelsen af partikler. Derudover reducerer den tiden der skal bruges til analyse ved 
at præsortere hvilke partikler, der skal håndplukkes og analyseres kemisk hvis polymertypen skal bestemmes. 

Den foreslåede strategi kan effektivt udnyttes til mikroplastikanalyse i forskellige miljøer, herunder sediment, 
vand (via mantratrawl) og biota, forudsat at der udføres passende prøvebehandling. Nile Red, som foreslået af 
både OPAM og HELCOM, tilbyder en lovende metode til overvågning af aktiviteter på grund af dens enkelhed 
og omkostningseffektivitet, som det fremgår af resultaterne af denne undersøgelse. Mens undersøgelsens 
fokus var på partikler, så længe de kan vælges manuelt til yderligere analyse uden at kræve udstyr med højere 
forstørrelse. Desuden er der potentiale for at bruge denne teknik til karakterisering af polymerer, men 
yderligere undersøgelser er nødvendige.  
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i.1.2 Maskinlæringsstrategi for mikroplastkarakterisering og kvantificering for små 
mikroplastpartikler ved µFTIR billeddannelse 

i.1.2.1 Baggrund 
Metoden beskrevet ovenfor er rettet mod de større mikroplastpartikler. De mindre bestemmes ofte med µFTIR 
hyperspektral billeddannelse, en teknik der i dag er den mest almindelige og nyeste til identifikation af små 
mikroplastik. Denne teknik indsamler kemisk og rumlig information om mange partikler på samme tid ved 
automatiseret kortlægning af en prøve, hvilket muliggør analyse for små mikroplastpartikler uden manuel 
sortering og som tillader estimering af partikelegenskaber såsom deres areal og diametre. 

µFTIR hyperspektral billeddannelse skaber komplekse og store mængder information (millioner af spektre), 
hvilket fører til et behov for automatisk dataanalyse. Der findes forskellige tilgange til, hvordan man håndterer 
et sådant datasæt, lige fra bibliotekssøgningstilgange (korrelation til et referencebibliotek) til mere avancerede 
maskinlæringsstrategier. Sidstnævnte anvender ofte flere dataforbehandlingsstrategier, eksplorativ analyse og 
multiklassemodeller, der dækker de plasttyper der findes i miljøet. Dette arbejdes der med i denne 
arbejdspakke med henblik på at skabe ny vide, der kan benyttes ved overvågningsaktiviteter. 

i.1.1.1 Metode 
Forskellige multivariant teknikker (PCA, SIMCA og PLS-DA) blev evalueret for at bestemme små mikroplastik (< 
300 µm) fra µFTIR hyperspektral billeddannelse.  

Mikroplast blev fremstillet af de mest almindelige plastmaterialer (PE, PET, PMMA, PVC, PC, PUR, PA, PS, ABS 
og PBT) og brugt som reference til identifikation af plastik fra miljøet. Disse materialer blev formalet i en 
metalkværn og sigtet. Partikler fra 10 til 300 µm blev placeret på et silicium (Si) filter og et filter for hver polymer, 
samt en blanding af al mikroplastik tilsat naturligt stof, blev fremstillet og analyseret med et μFTIR 
hyperspektralt billeddannelsessystem. En tilgang til maskinlæring ved anvendelse af hierarkisk analyse (HA) 
blev evalueret for at trække mikroplastinformation ud af de hyperspektrale billeder. Figur 14 viser 
arbejdsgangen udviklet til karakterisering af mikroplast. 

Først blev Principal Component Analysis (PCA) anvendt til udvælgelse af området af interesse, dvs. 
partikelinformation. Soft Independent Modeling Class Analysis (SIMCA) blev efterfølgende anvendt til at 
sortere det naturlige stof og mikroplastinformation (TRIN 2, Figur 14), hvor sidstnævnte blev yderligere brugt 
til polymerdiskrimination ved anvendelse af Partial Least Squares-Discriminate Analysis (PLS-DA - TRIN 3).  

 

Figur 14. Workflow af FTIR-databehandlingen og multivariantteknik anvendt i hvert trin af den hierarkiske analyse 
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Detaljeret information om partiklerne blev dannet ved at bruge billedets rumlige information til partikeltælling 
og størrelsesfordeling. Sidstnævnte blev yderligere undersøgt for at vurdere deres variabilitet i forhold til de 
to almindelige måder at rapportere partikelstørrelsen på: (1) Længde (maksimum Feret diameter) og (2) Filter 
porestørrelse (minimum Feret diameter). Feret diametre blev beregnet for hver partikel. 

i.1.1.2 Resultater og diskussion 
PCA var i stand til at udvælge området af interesse ved at fjerne eventuelle pixels, der ikke var relateret til 
partiklerne i billedet, hvilket reducerede behandlingstiden og risikoen for falsk positiv identifikation. Både 
SIMCA (TRIN 2) og PLS-DA (TRIN 3) modellerne viste stor gennemsnitlig følsomhed og specificitet til at 
frasortere naturligt stof og skelne mellem polymertyperne. Hvad angår klassificeringsfejl, blev der opnået et 
gennemsnit på 3% og 0,2% på henholdsvis TRIN 2 og TRIN 3. Disse evalueringsparametre bruges til at estimere 
sandsynligheden for, at pixels tilhører den korrekte målkategori og er gode eksempler på en 
robusthedsevalueringsmetode, der kan anvendes ved rapportering og sammenligning af mikroplastdata fra 
forskellige analytiske teknikker data. Det referer til både True Positive Rate og True Negative Rate, det bruges 
til at vurdere modellens ydeevne ved korrekt klassificering af plastikpartiklerne. Figur 15 viser resultatet af en 
prøveafbildning indeholdende en blanding af plast og naturligt stof i hvert trin af den hierarkiske analyse. 

 

Figur 15. Resultater af en billedprøve indeholdende en blanding af plast og naturligt stof i hvert trin af den hierarkiske analyse 

 

Den udviklede metode kan anvendes til forskellige prøvematricer, så længe prøven er oprenset med henblik 
på mikroplastanalyse. Metode kan øge hastigheden af dataanalyse, forbedre kvalitet og reproducerbarhed i 
polymerbestemmelse, og demonstrerer hvordan potentialet ved μ-FTIR hyperspektral billeddannelse til 
bestemmelse af mikroplast kan udnyttes fuldt ud. Morfologisk information om prøverne findes ud fra de 
identificerede billeder, for eksempel partikelstørrelse og deres frekvens (Figur 16).  
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Figur 16. PE forudsagt billede med partikelantal og størrelsesfordeling. Infrarøde spektre af alle PE-partikler vises 

En sammenligning af partikelantal som maksimum og minimum Feret diameter (mikroplastik > 50 µm) blev 
udført på et billede, der kun indeholdt PE-partikler, Figur 17. Resultatet viser, at antallet af partikler blev 
halveret, da filterafskæringen blev brugt til at beregne partikelfrekvensen. Dette peger på nødvendigheden af 
standarddefinitioner for, hvordan partiklernes størrelse og frekvens skal beregnes og/eller rapporteres i 
forsknings- og overvågningsaktiviteter for at kunne sammenligne resultater, da det kan variere betydeligt med 
den anvendte strategi. Der findes ingen standardprocedurer eller retningslinjer for hvordan dette skal gøres, 
og viser vigtigheden af i det mindste at rapportere den valgte beregning frem for kun at angive antallet af 
identificerede partikler. 

 

Figur 17. Forudsagt billede for PE og deres partikelantal (> 50 µm). Beregning af partikelmængde baseret på maksimal og minimum 
Feret diameter 

Den tilgang, der præsenteres i denne undersøgelse, tilbyder et væld af information, der kan hjælpe med 
karakterisering og sporing af mikroplast fra forskellige kilder i miljøprøver. Det er dog vigtigt at behandle og 
udtrække mikroplastik korrekt fra den undersøgte matrice for at opnå nøjagtige resultater. Denne strategi kan 
effektivt implementeres til overvågning af aktiviteter ved hjælp af de her præsenterede parametre. Hvis der 
anvendes data fra et andet instrument eller en anden kilde, skal der etableres en kalibreringsoverførsel, før der 
udføres nogen analyse. Ikke desto mindre kan metoden replikeres ved hjælp af alle de angivne oplysninger i et 
hvilket som helst andet µFTIR-instrument. Desuden kan tilgangen opdateres til at omfatte andre polymerer 
eller klasser, afhængigt af forskningsbehovene 

 

i.2 AP 3 – Evaluering af prøveudtagningsmetoder for mikroplast i overfladevand og 
vandsøjle 

Formålet med arbejdspakke 3 er at skabe viden om forskelle mellem forskellige prøveudtagningsmetoder for 
mikroplast i overfladevand og vandsøjlen. Her sammenlignes tilgængelige data indsamlet med net trukket af 
et skib, fx manta-trawl, og pumpefiltrerende prøvetagning på metalfiltre, som kan bruges til prøvetagning af 
den finere plastfraktion, og som kan bruges i fx FerryBoxes. 

Den mest hensigtsmæssige prøvetagningsteknik for mikroplast defineres ud fra hvilket system, der skal 
prøvetages (f.eks. strande, sublitorale sedimenter, havoverfladen, vandsøjle) samt de efterfølgende 
behandlings- og analysekapaciteter. Sidstnævnte sætter barren for, hvad der kan opnås med hensyn til 
analytisk output, såsom hvordan små mikroplaster kan identificeres pålideligt, hvorvidt polymertyper kan 
identificeres hvorvidt partikelstørrelse og form kan identificeres, osv. Eksisterende data fra litteraturen er 
derfor ganske diverse, og rapporterede resultater for forskellige vandområder varierer indenfor et 
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koncentrationsinterval på 8-9 dekader (Figur 18). Dette interval afspejler næppe ’virkelige’ 
koncentrationsforskelle, men snarere forskelle i prøvetagnings- og analysemetoder i kombination 
med ’virkelige’ forskelle i koncentration i de pågældende havområder. Hvor meget der kan tilskrives hvilket 
forhold, er dog vanskeligt at sige.   

 

Figur 18. Et udvalg af undersøgelser, der har analyseret koncentrationen af mikroplast i havvand. Linjerne viser det registrerede 
område af mikroplastikkoncentrationer, og prikkerne markerer middelkoncentrationerne i partikler pr. m3. Undersøgelserne er 
grupperet efter oceanografisk region. Linjernes farver refererer til den anvendte maskestørrelse fra 10-50 µm (grå), over 50-150 µm 
(blå), 150-250 µm (grøn), 250-350 µm (rød) til 450-550 µm (gul). Bemærk, at undersøgelserne brugte  forskellige analysemetoder, 
hvoraf nogle er bedre end andre til at identificere små mikroplastik. 

Til konkret sammenligning af data fra prøvetagning med net, der typisk har en maskevidde på cirka 300 µm, 
med prøvetagning med pumpefiltrering, der typisk har porestørrelse på filtre på 10 µm, foreligger der kun to 
datasæt, der har udført begge metoder på samme vandområde og samme tidspunkt. Det ene blev udført i 
Grønland, omkring Nuuk, det andet blev udført i Limfjorden (Figur 19). Disse undersøgelser viste, at der var 
cirka tre til fire størrelsesordener forskel på resultaterne fra de to metoder (målt som antal partikler per vand 
volumen). Der var endvidere ingen korrelation mellem hvad der blev målt med den ene versus den anden 
teknik.   
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Figur 19. Sammenligning af koncentrationer fundet af prøver indsamlet med AAU-UFO pumpesystem og med net 

I 2022 blev der gennemført en undersøgelse med henblik på at etablere en overvågningsstrategi til vurdering 
af mængden af flydende mikroaffald i overfladelaget af de danske kystnære farvande. Undersøgelsen anvendte 
de seneste internationale anbefalinger til rutinemæssig prøveudtagning, analyse og datarapportering. 
Mikroaffald > 300 µm blev indsamlet på syv kystnære lokaliteter omkring Sjælland, Danmark, ved hjælp af et 
Manta-trawl. De opsamlede partikler blev sigtet i størrelsesfraktioner > 5 mm, 1-5 mm og 0,3-1 mm, og derpå 
vurderet visuelt for at manuelt at udtage mikroplastlignende partikler og fibre. Antallet og koncentrationerne 
af identificeret mikroaffald ved hver prøvetagningsstation ses i Tabel 1. Medianmikroplastkoncentrationen var 
0,057 partikler m-3 og en maksimal koncentration på 0,213 partikler m-3, hvilket indikerer lave 
forureningsniveauer af de undersøgte havoverfladevande. Dette niveau er også sammenligneligt med 
resultater i andre publicerede undersøgelser fra danske farvande. 

I lighed med andre internationalt publicerede undersøgelser finder denne undersøgelse, at inter-
prøvevariabiliteten kan være høj. Prøvetagning og analyse af mindst 2-3 replikater fra hvert sted bør derfor 
bruges i overvågningsøjemed. Derudover bør mere end én prøveudtagning pr. år pr. sted overvejes. Det blev 
også konkluderet, at der kræves en prøvetagning på mindst 100 m3 overfladevand for at indsamle en 
repræsentativ prøve i overensstemmelse med anbefalingerne i de internationale retningslinjer for overvågning 
med Manta-trawl. 

Tabel 1. Koncentrationen af visuelt identificerede mikroplastiske fibre og partikler og det beregnede prøvevolumen af hver analyseret 
prøve 

Prøve Sample 
volume 

[m3] 

 Koncentration [antal m-3] 

 Fibre Partikler Total 

Køge Bugt, Brøndby st T1 193  0.047 0.010 0.057 
Køge Bugt, Brøndby st T2 173  0 0.006 0.006 
Sejerøbugten, Gudmindrup 222  0.036 0 0.036 
Køge Bugt, Kofoeds enge T1 183  0.005 0.005 0.011 
Køge Bugt, Kofoeds enge T2 185  0.005 0.07 0.076 
Østfalster, Pomlenakke 172  0.035 0.017 0.052 
Roskilde Bredning, Risø 184  0.011 0.005 0.016 
Roskilde Vig East I T1 184  0.027 0.016 0.043 
Roskilde Vig East I T2 126  0.095 0.095 0.191 
Roskilde Vig West I T3 162  0.056 0.037 0.093 
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Roskilde Vig West I T1 135  0.081 0.030 0.111 
Roskilde Vig East II T1 149  0.047 0.134 0.181 
Roskilde Vig East II T2 85  0.047 0.166 0.213 
Roskilde Vig West II T1 140  0.057 0.021 0.078 
Roskilde Vig West II T2 130  0.031 0 0.031 
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1 Background  
In consequence of the EU Marine Strategy Framework Directive, the environmental status of the marine waters 
must be assessed with respect to marine litter, here among the composition, quantity, and spatial distribution 
of micro-litter. In Denmark's Marine Strategy II, Part 1, a supplementary environmental goal is set that the 
Ministry of the Environment shall work towards developing indicators and measurement methods for 
microplastics in seabed sediment and water column.  

The Danish Environmental Protection Agency's monitoring of Danish marine waters is partly coordinated 
through the regional collaborations OSPAR and HELCOM. In these organizations, there is a demand for 
knowledge about the methodological basis for achieving representative sampling of microplastics, and 
knowledge of comparability of methods for microplastic extraction, analysis, and interpretation of taken 
samples.  

This project contributes to reaching the supplementary environmental goal set in Denmark's Marine Strategy 
II, Part 1, and thus contributes to the creation and expansion of monitoring and action programs according to 
the Marine Strategy Directive. It addresses analytical and methodological issues regarding microplastics in 
sediment and analysis methods in general as well as sampling methods regarding microplastics in the water 
column. The project's results intend to bring Denmark and the regional collaborations closer to a coordinated 
and harmonized monitoring program for microplastics in the marine environment. 

 

2 Objective  
The purpose of investigating the distribution of microplastics (pieces of plastic between 1 µm and 5 mm) in the 
marine environment is to improve the knowledge needed to assess the environmental status with respect here 
to, and hereby creating a basis for being able to work towards a good environmental status of marine areas 
with respect to microplastics. Good environmental status with respect to microplastics is defined such that the 
composition, amount, and spatial distribution of microplastics in the water column and in seabed sediment are 
at levels that do not harm the coastal and marine environment. However, there is a lack of sufficient knowledge 
in the area, which this research project will contribute to obtaining. There are, among other things, missing 
knowledge of the methodological basis for achieving representative sampling in the marine environment, and 
knowledge of the comparability of methods for purification, analysis, and interpretation of taken samples. The 
project addresses this lack of knowledge and is intended to shed light on analytical and methodological issues 
regarding microplastics in sediment and to compare sampling methods regarding microplastics in the water 
column. 

2.1 WP1 – Representative sampling for statistically reliable assessment of microplastics in 
marine sediments 

It is an objective of Danish and European micro-litter monitoring to create knowledge about the variation of 
microplastics in Danish marine sediment, both regarding concentration, particle sizes, and polymer types. In 
doing so, a basis must be created for assessing how and how large samples must be taken, to be able to state 
with a given statistical certainty about the presence of microplastics in different size fractions and polymer type 
fractions. Such assessment will depend on the actual composition and concentration in the sediment, the 
actual microplastic inhomogeneity in a sediment sample, and the analytical method applied. The objective of 
WP1 is to assess this experimentally on a set of marine sediment samples. 

2.2 WP2 – Evaluation of analytical methods for microplastics in sediments 
The objective of WP2 is to investigate precision and accuracy of quantification by different analysis methods 
recommended by OSPAR / HELCOM and JRC / EU TGML for marine monitoring of microplastics in, e.g., 
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sediments. These range from relatively simple methods to the most precise methods available to research. This 
is addressed experimentally by comparing one of the most advanced analytical methods allowing chemical 
identification of particles in a sample to a ‘simpler’ approach targeting solely identification of whether a particle 
belongs to the material group of microplastics. 

2.3 WP3 – Evaluation of sampling methods for microplastics in surface water and water 
column 

The objective of WP3 is to create knowledge about differences between different sampling methods for 
microplastics in surface water and the water column. Here, available data collected with nets pulled by a ship, 
e.g., manta trawl, and pump-filtering sampling on metal filters, which can be used for sampling the finer plastic 
fraction and which can be used in, e.g., FerryBoxes, are compared. 

 

3 Content 
The project consisted of three work packages: 

3.1 WP 1 – Representative sampling for statistically reliable assessment of microplastics in 
marine sediments 

Based on experimental studies on real sediments, it was assessed how much sample is required to yield a solid 
picture of the microplastic content in Danish marine sediments. For this purpose, four sediment samples of 
approx. 20 kg wet weight each were collected from the top 2 cm of the seabed and examined for microplastics 
from 10 to 5000 µm in size. The samples were analysed with a state-of-the-art technique: FPA based µFTIR 
imaging. Based on the identified microplastics, it was assessed how much sample should be analysed per 
station. The stations were in areas with different degrees of pollution and distance to sources, as transport and 
deposition of microplastics can be expected to affect the results. General sediment characteristics, e.g., water 
content, and organic matter content were determined, and it was investigated whether connections between 
these parameters and microplastic content could be identified.  

In addition, the inhomogeneity of the collected samples was investigated in terms of water content and organic 
matter content to assess how best to subsample such large sample and to get an understanding of the 
uncertainty that insufficient subsampling introduces. The uncertainty that sample preparation introduced was 
addressed, as was the uncertainty introduced by the chemical analysis.  

 

3.2 WP 2 – Evaluation of analytical methods for microplastics in sediments 
Based on experimental studies, the feasibility and applicability of analysis methods recommended by OSPAR / 
HELCOM and JRC / EU TGML for marine monitoring of microplastics in, e.g., sediment samples is investigated. 
Various analytical techniques are currently being considered for microplastic identification and quantification 
in different size fractions. For larger fractions (>100 or >300 μm) it has been claimed that, e.g., faster screening 
methods such as staining techniques can act as a first level microplastic indicator based on fluorescence 
microscopy supplemented with FTIR spectroscopic identification. For microplastics in the size range 10–100 
μm, μFTIR imaging is currently state-of-art for the identification of microplastics and is also recommended for 
marine monitoring as level 2. However, analytical and spectral factors can affect the characterization and 
quantification of microplastics for both methods used in level 1 and level 2. In this work package it is among 
other assessed how pre-processing of the spectral data, including reduction of scattering/scattering and other 
variability in the spectra as well as removal of background can lead to a higher quality of analysis when 
characterizing and quantifying microplastic analyses. The results of these studies are expected to lead to 
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improved data processing protocols and the development of more robust analytical identification methods, 
also with a focus on data quality assurance and quality control, including validation processes to reduce bias 
and sources of error. 

 

3.3 WP 3 – Evaluation of sampling methods for microplastics in surface water and water 
column 

A comparative analysis was prepared regarding the sampling of microplastics in the water surface/water 
column in relation to recommendations from HELCOM and EU/TGML. This is to highlight the difference 
between pump filtering systems and collection with nets such as manta trawls. The analysis was based on 
existing data collected by Aalborg University and Aarhus University and addressed the advantages and 
disadvantages of the sampling methods regarding coverage of temporal and spatial variance of microplastic 
concentrations in the water column. 
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4 WP1 
Representative sampling for statistically reliable assessment of microplastics in marine sediments. 

4.1 Challenges  
4.1.1 Sample amount 
An objective of Danish micro-litter monitoring is to create knowledge about the level of microplastics in Danish 
marine sediment and its distribution. To obtain a reasonably precise quantification of microplastics in sediment, 
a reasonable number of plastic particles must be detected. Assume for simplicity that 1 g of sediment was 
analysed in full and revealed 1 microplastic particle. Concluding that the concentration of microplastics in that 
sediment is 1 counts g-1 is rather uncertain as another sample of 1 g sediment could have contained 0, 2 or 
more particles, affecting the relative concentration substantially. However, if 100 microplastic particles were 
detected, one can have more confidence in that number.  

The issue is further complicated by the fact that microplastics come in many sizes. Microplastics are created by 
the breakdown of larger particles and items. Particles of smaller size will hence be more abundant than 
particles of larger size. This means that less sample is needed to find enough small particles than to find enough 
large particles.  

Microplastic concentration has traditionally been reported as counts per volume or mass, which becomes 
problematic when addressing particles within a size continuum. For example, finding one particle of 5 mm and 
1 particle of 1 µm in 1 g of sediment would yield a microplastic concentration of 2 counts g-1. However, two 
particles of 5 mm would yield the same concentration as would two particles of 1 µm. Together with the fact 
that small microplastics are more abundant than large ones, this means that the size distribution of particles is 
needed to interpret how much sample is enough to quantify the concentration up to a certain particle size. 

Another way to quantify the concentration of microplastics is by its mass. Here the main issue lies in the fact 
that particle mass comes in the third power of particle size (assuming identical shape of the particles). Assume 
for example that 1 g of sediment was analysed and 1 particle of 5 mm and 1000 particles of 1 µm were found. 
In terms of counts, the one big particle means little, however, in terms of mass it dominates the concentration. 
In this extreme example, the mass concentration including the 5 mm particle would be eight orders of 
magnitude higher than the mass concentration without it. Whether or not to exclude such ‘outlier’ from the 
dataset is not clearcut, as it obviously was in the sediment, and excluding it would introduce as much 
uncertainty as including it. Again, this means that a mass concentration must be accompanied by a size 
distribution to be able to reliably interpret the data.  

Furthermore, microplastics come in many polymer types, and when the objective includes quantifying polymer 
types, the requirement of sufficient particles extends to finding sufficient particles within each polymer type. 

4.1.2 Sampling uncertainty 
Sampling at sea involves several issues, of which the homogeneity of the seabed sediment with respect to its 
microplastic content is a main one. The basis for any sampling for monitoring is that the collected sample is 
representative of the location from where it is collected. How much seafloor is understood by ‘location’ is 
seldom clear-cut, but typically the intention is to cover a larger area. If the microplastic concentration varies 
randomly over the area, as exemplified in Figure 20A by a fictive variation along a transect, a representative 
sample can be obtained within a small area as the variation between two points close to each other is the same 
as the variation between two points far from each other. To achieve it, several grabs must be collected and 
mixed, after which the sample can be assumed representative. However, if the variation over the area is large 
compared to the variation between two points close to each other (Figure 20B), the area must be sampled by 
several points distributed over the area, but less grabs per point are needed. If the variation is a combination 
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of the two (Figure 20C), several points distributed over the area must be sampled by several grabs. Alternatively, 
more points must be sampled. How to organize a sampling hence depends on how the microplastics are 
distributed over the seabed. Unfortunately, this is seldom known, and an educated choice must be made.  

 

Figure 20. A fictive example of microplastic concentration along a transect 

The above example illustrates the risk of taking a single grab and then assume it is representative for the 
sampled location. It also leads to considering what the spatial scale of variation is. Pragmatically speaking, a 
good approach for sampling an area would be to divide it into many cells / transects which then are sampled 
repeatedly, and the collected sample mixed into one (Figure 21). Mixing all the samples will then represent the 
sediment in the field. How many points and how many grabs per point will depend on the variation of 
microplastics in the seafloor as illustrated in Figure 20, and on the effort that can be put into the sampling. 
Sampling is costly and sampling a large grid takes much ship-time. The final decision must hence be made 
balancing the need for a representative sample and the effort put into the sampling.  
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Figure 21. Subsampling from a field 

4.1.3 Analysis uncertainty  
Another aspect complicates the issue of obtaining a precise quantification of microplastics, namely that it can 
be impractical or impossible to analyse the whole sample, leading to a need of subsampling the collected 
sediment for chemical analysis. This is challenging, as matrices like sediment and soil by nature are rather 
heterogenic (Holland & Elmore, 2008). If the degree of heterogeneity is high, the variation of particulate 
pollutants like microplastics can also be expected high. Taking a subsample from a heterogenic matrix such as 
marine sediment sample hence introduces uncertainty on the quantification of microplastics in that sample.  

Then there is uncertainty in the analysis itself, partly related to the recovery of the extraction (sample 
preparation) and partly related to the chemical analysis. The recovery is seldom 100% and not necessarily 
constant between samples. Especially the latter introduces some error into the analysis. Finally, the chemical 
analysis requires subsampling of the concentrate extracted from the sample, as the number of extracted 
particles in most cases by far exceeds what can be analysed in one go. However, subsampling a particle 
concentrate is also inherently uncertain, as particles tend not to be evenly distributed in the concentrate even 
though effort is put into homogenizing it.  

The analysis hence involves two subsampling’s: First a subsampling of the collected sample to be taken into 
sample preparation; then a subsampling of the concentrate created by the sample preparation to be chemically 
analysed. The question arises what is the better approach? Take a large subsample into preparation and 
chemically analyse a small part of the extract here from; or take a small subsample into sample preparation 
and chemically analyse a large part or all the extract here from. The answer to this lies in where the largest 
uncertainty is. Whether it is in the subsampling of the collected sample, or in the subsampling of the extract 
for chemical analysis. All else being equal, one would expect the uncertainty of subsampling an extract to be 
less than subsampling a raw sample, as it seems reasonable to assume that the extract is a less complex matrix 
and hence more homogeneous.   

 

4.1.4 Overall uncertainty 
The total uncertainty on a datapoint in the field becomes the combined uncertainty related to the above 
discussed issues. Total uncertainty is a combination of the uncertainty of:  

• sampling in the field 
• subsampling the collected sample in the laboratory 
• extracting the microplastics, and  
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• analysing the microplastics.  

The question now arises how large these individual uncertainties are, and which dominates the overall 
uncertainty. As an example of a worst case, it could turn out that the variability in subsampling a sediment 
sample in the laboratory is larger than the variability in the field. This would mean that an observed difference 
between two monitoring locations are not real differences but an artifact of the analytical protocol. Or it could 
turn out that the variability over an area like the one illustrated in Figure 21 is huge compared to all other 
variabilities and uncertainties, and that the sample collected at one point hence does not represent the area it 
is supposed to.  

How to overcome these issues is not straightforward. It is basically a case of ‘Known, Unknown, and 
Unknowable Uncertainties’, which is common for many real-life issues. A known uncertainty is where a 
probability can be precisely specified, an unknown uncertainty is where somebody knows it (where the 
probability can be obtained at a reasonable effort), while an unknowable uncertainty is missing information 
unavailable to all (for which it often is impractical or impossible to obtain the actual probability). The approach 
towards increasing confidence in microplastic concentrations is hence a journey where the knowledge on 
uncertainties is increased and moved as much towards ‘Known Uncertainties’ as possible. This will allow to 
minimize uncertainties and to increase the confidence in the obtained numbers.  

 

4.2 Methods  
4.2.1 Sampling  
The top 2 cm of seabed sediments were collected from four stations (Figure 22) using a Haps corer and multiple 
grabs. Each station ended up with approx. 20 kg wet sediment stored in a plastic-free metal bucket, which was 
immediately transported to Aalborg University. The samples were then kept at 5°C until analysis.  
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Figure 22. Sampling stations for the experiment 

4.2.2 Subsampling in lab 
The microplastic concentration in the 20 kg of sample in the metal bucket will have varied in all three 
dimensions. This variability was pragmatically assessed by reducing it to a two-dimensional variability, where 
the vertical heterogeneity was not assessed but overcome. Here for a stainless corer (length: 30 cm, Ø: 35 mm) 
was custom made for subsampling (Figure 23). It was inserted vertically into the bucket holding the sediment, 
collecting a full core from top to bottom, overcoming any vertical heterogeneity. To minimize the disturbance 
of the sediments while taking the core, the bottom of the corer was sharpened. The length of the corer was 
sufficient to accommodate the whole depth of the sediment in the bucket, with a few centimetres overhead 
space. 
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Figure 23. Sketch of the custom-made sediment corer 

The horizontal heterogeneity was tackled by inserting multiple corers into the bucket at the same time, evenly 
covering the sediment surface. A total of 11 cores were taken as this was what could be fitted into the bucked. 
Of these the 6 were randomly taken into work and the rest stored for later use. This procedure was repeated 
trice, and a core from each of the three subsampling’s were mixed into one. Hereby a typical subsampling 
strategy was mimicked where the three cores together yielded the amount of sediment which underwent 
sample preparation following the protocol shown in Figure 26. This hence led to 6 subsamples for each bucket 
which were then prepared in full (Figure 24). In addition, one blank sample containing 200 g washed and 
muffled (500°C) sand, was prepared for each bucket to assess the contamination generated during sample 
treatment. 

 

Figure 24. Diagram of subsampling design for sediments. One bucket sediment has 6 subsamples, plus one blank 

Before the subsampling, the sediment in the bucket were well mixed with a pre-cleaned stainless-steel rod for 
at least 10 minutes. The corers were carefully inserted till they reached the bottom of the bucket. They were 
left for a few minutes to allow the captured sediments to settle, then the sediment was quickly transferred to 
pre-cleaned 5 L beakers. The total sediment amount extracted by the three consecutive subsampling’s yielded 
approx. 0.5 kg wet weight, which was then taken into preparation (Figure 25).  

 

Figure 25. Subsampling using custom-made stainless corers 
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4.2.3 Sample preparation 
The sample preparation will cause some loss of microplastics, for example because particles stick to various 
surfaces, do not get separated completely during density separation, et cetera. To assess the efficiency of the 
microplastic extraction protocol (Figure 26), recovery experiments were conducted by adding well-known and 
easily recognizable plastic particles.  

4.2.3.1 Sample preparation 
Samples were prepared according to Liu et al. (2022). In short, the sample preparation and the extraction of 
microplastics followed the protocol outlined in Figure 26.  

 

Figure 26. Protocol for sample preparation and microplastic extraction 

 

4.2.4 Chemical analysis 
Samples were prepared according to Liu et al. (2022). In short, the sample preparation and the extraction of 
microplastics followed the protocol outlined in Figure 27. 

 

Figure 27. Protocol for chemical microplastic analysis 

Only small aliquots of the 5 mL sample concentrate could be scanned in one go as marine sediment is a complex 
matrix which leaves interfering material in the concentrate even after excessive sample treatment. 3-5 aliquots 
out of the sample concentrates were scanned, yielding in the order of 10% of the extract analysed chemically.  
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4.2.5 Recovery 
The efficiency of the extraction was assessed individually for each of the four times six subsamples. This was 
done by spiking a known number of readily identifiable microbeads (Figure 28) to the subsample before 
extraction and checking how many of them were covered after the full extraction process. As recovery test 
material, microbeads were selected with different polymer type and size. In total four types of microbeads 
were selected (Table 2): polypropylene (PE) of small size (45-63 µm) and large size (75-90 µm), and polystyrene 
(PS), also of two sizes (45-63 µm and 90-106 µm) ().  

 

 

Figure 28. Microbeads selected as reference material to quantify the extraction recovery 

 

Table 2. Microbeads for testing the extraction recovery 

Polymer Density g/cm3 Small size (µm) Colour 
PE 0.98 45-63 light blue 
PE 0.98 75-90 yellow 
PS 1.01 45-63 dark blue 
PS 1.01 90-106 red 

 
The extraction recovery was assessed by counting a known amount of microbeads under a stereomicroscope 
(ZEISS, SteREO Discovery.V8) equipped with an Axiocam 105 color camera with a maximum magnification of 8 
× (Figure 29), then adding that known number to the subsample (Figure 25). Each subsample was spiked all 
with four types of beads. After the extraction process, the recovery of beads was checked visually using the 
same stereomicroscope. 
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Figure 29. Counting microbeads under the microscope 

 

4.2.6 Statistical analysis 
All statistical analysis was done in R (4.2.2), using packages of ggplot2, RColorBrewer, ggbreak, scales, and 
readxl. Figures were generated by R (4.2.2) and QGIS (3.28.2).  

 

4.3 Results  
4.3.1 Concentration levels at the investigated stations 
Without correcting the results for recovery within the individual subsamples, and without correcting them for 
blank values, the concentrations in the four samples ranged from 3204 to 10296 counts kg-1, corresponding to 
370 to 1866 µg kg-1 (Figure 30, Figure 31). In another study, Liu et al. (in prep) quantified microplastics in 19 
sediment samples from different parts of the Danish marine environment and found 119 to 23340 counts kg-1, 
corresponding to 5 to 6958 µg kg-1. The samples collected for the present study were hence well within what 
was found for other Danish marine sediments.  
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Figure 30. Microplastic concentrations as counts per kg of dry sediment in the four investigated stations 
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Figure 31. Microplastic concentrations as mass per kg of dry sediment in the four investigated stations 

 

4.3.2 Variation between subsamples 
4.3.2.1 Variation on microplastic concentration 
Each of the 4 samples were analysed as 6 subsamples of approx. 0.5 kg wet sediments each, resulting in 24 
analysed samples. In addition, one blank was analysed per sample. For each subsample, 3 or 5 aliquots were 
scanned, depending on how much extract could be deposited on the window (Appendix A).  

Table 3 presents the raw data of the study, that is, data which is not corrected for recovery and blank values. 
It shows the amount of prepared subsample, the analysed fraction of the extract, count and mass of the 
identified microplastics.  

For each subsample, the concentration was represented by averaging the concentration from the 3-5 scans of 
that subsample. A one-way ANOVA test was performed to assess if there is any significant difference between 
the subsamples. This was done for all for stations, both in terms of concentration by particle counts and mass. 
The test showed that when the concentration was measured by counts, only the most polluted station 
ARH170006 had no significant difference between subsamples (Appendix A, Table 11). But when it comes to 
the mass concentration, all stations showed no significant difference between the subsamples.  
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In terms of microplastic concentration (counts kg-1 and µg kg-1, respectively), there was some variation between 
subsamples in terms of the concentration they yielded. Here we used relative standard deviation to the mean 
(RSD, %) as a measure of variation, as the absolute value based on the mean can be misleading when comparing 
across samples with different results. RSD value ranged from 17% to 44% when measuring concentrations as 
counts kg-1 from the four stations (Appendix A). In all cases, concentrations measured as mass kg-1 had much 
higher variation, with RSD ranging from 28% to 185%. ARH170006 always exhibited the lowest RSD between 
subsamples for counts as well as mass (17% and 28%, respectively). The highest RSD between subsamples for 
count concentrations was 44% at FYNLunkebugt4 and for mass concentrations it was 185%, also at 
FYNLunkebugt4. Appendix A presents all raw data down to the findings within the single scans.  

In analytical chemistry, RSD is commonly used to assess the reproductivity and repeatability of an analytical 
method. However, the RSD value often depends on the concentration of analyte, where higher analyte 
concentration in general would yield a lower RSD value (Rivera and Rodríguez 2011). This is in line with the 
results from this study both in terms of particle counts and mass, as the lowest RSD always was found in the 
samples from the most polluted station ARH170006 (Figure 30), whilst the highest RSD was found in the 
samples from the least polluted station, FYNLunkebugt4. This suggests that one can expect higher variation 
between subsamples if the sample has a low content of microplastic, in other words, more subsample is needed 
to achieve lower RSD in less polluted samples.  

Table 3. Subsamples analysed and microplastics identified 

Station Sub-
sample 

Amount of 
sediment 
[g DW] 

Number 
of scans 

Total 
fraction 
scanned 
[%] 

Equivalent 
sample 
mass 
scanned 
[g DW] 

Microplastic 
counts 
found in the 
scans 
[counts] 

Microplastic 
mass found 
in the scans 
[µg] 

FYNLunkebugt4 1 205.1 3 12 24.6 124 218.3 
 2 212.6 5 20 42.5 188 32.3 
 3 202.6 3 12 24.3 90 6.5 
 4 232.1 3 12 27.9 54 1.8 
 5 213.6 3 18 38.4 57 10.5 
 6 176.7 3 12 21.2 56 20.3 
Total  1242.7 20 86 178.9 569 289.8 
Blank  218.2 1 4 8.7 4 0.04 
FYNNord 1 134.8 2 12 16.2 83 14.4 
 2 137.3 3 18 24.7 62 7.0 
 3 134.4 3 12 16.1 31 3.2 
 4 135.8 3 12 16.3 59 4.8 
 5 148.1 3 12 17.8 71 6.4 
 6 132.2 3 12 15.9 47 3.0 
Total  822.6 17 72 98.9 353 38.8 
Blank  203.2 1 6 12.2 1 0.04 
ARH170006 1 113.4 5 10 11.3 112 6.8 
 2 125.6 5 10 12.6 132 14.5 
 3 117.7 5 10 11.8 85 15.8 
 4 120.8 5 10 12.1 128 14.6 
 5 118.6 5 10 11.9 148 17.7 
 6 115.4 5 10 11.5 128 11.1 
Total  711.5 30 10.0 71.2 733 80.6 
Blank  218.3 1 4 8.7 2 0.03 
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ARH170016 1 96.2 3 12 11.5 41 7.3 
 2 85.5 3 18 15.4 117 7.4 
 3 100.0 3 12 12.0 106 14.7 
 4 93.5 3 12 11.2 141 22.7 
 5 99.5 3 12 11.9 136 23.6 
 6 103.1 3 12 12.4 166 14.8 
Total  577.8 18 12.9 74.5 707 90.5 
Blank  218.4 1 6 13.1 6 0.25 

 

The subsamples extracted as outlined in Section 4.2.2 were with a few exceptions rather homogeneous in 
terms of water content (Figure 32) and organic matter content (Figure 33). Only subsample 1 and 2 for 
FUNLunkebugt4 varied significantly in water content. FUNLunkebugt4 was also the station that held the least 
water content, which indicates that sediments with higher solids content would have higher variation between 
subsamples.   

 

Figure 32. Water content measured for each subsample in triplicates 
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Figure 33. Organic matter content measured for each subsample in triplicate 

4.3.2.2 Variation on polymers 
In total 17 polymer types were found when lumping all the identified microplastics from the four stations. 
Lumping the values from all subsamples per station, it was found that the particle counts and the masses varied 
significantly between the stations. Polyester was the most abundant polymer at all stations (Figure 34), while 
some rare polymers were only detected in one or two of the stations, for instance Vinyl chloride copolymer 
and Poly(vinylpyrrolidone_co_vinyl acetate) were only found in ARH70016, each with one count (Appendix A, ). 
Such low number means that there is a high uncertainty on such rare polymers, as one would need more 
particle counts to reliably say that the deducted concentration is the actual environmental concentration of 
that polymer. The variation between stations was even more expressed when measured by particle mass 
(Figure 35). 
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Figure 34. Polymer composition for each station, by particle counts 

 

Figure 35. Polymer composition for each station, by particle mass 

 

4.3.3 Variation between scans 
3 or 5 aliquots of the extracts from each subsample were scanned (Table 3). Each such scan can be used to 
calculate a concentration in the original sample. For example, if the original sample taken into analysis was 200 
g DW, of which 4% of the extract was deposited and analysed in a single scan, this would correspond to 
200*0.04 = 8 equivalent grams of dry sediment scanned (column ‘Equivalent sample mass scanned [g DW]’ of 
Table 3). If for example 20 microplastics were identified in this scan, the resulting concentration would be 
20/0.008 = 2500 counts kg-1. Another scan would probably yield a different number and hence a different 
concentration. Combining all concentration calculated in this way, for all scans of all subsamples yields a 
distribution per collected sample (Figure 36, Figure 37).  
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Figure 36. Boxplot of the microplastic counts from the four stations. The value of each scan is marked by a dot. The line in the centre of 
the box is the median, the bottom and top of the box are the 25 and 75 percentiles, respectively. The vertical lines below and above each 
box indicate the 5 and 95 percentiles, respectively.  
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Figure 37. Boxplot of the microplastic mass per particle from the four stations. The concentration calculated by each scan is marked by 
a dot. The line in the centre of the box is the median, the bottom and top of the box are the 25 and 75 percentiles, respectively. The 
vertical lines below and above each box indicate the 5 and 95 percentiles, respectively.  

The boxplots show that there is quite some variability between scans of a single sample and that relying on 
one subsample with one scan would introduce a quite high uncertainty. Exploding the figures into individual 
subsamples and the concentration they yielded for the 3-5 scans shows that variations between subsamples 
were quite significant especially for ARH170006 in terms of counts concentration (Figure 36, Appendix A),  but 
the most significant variation in terms of mass concentration was in FYNLunkebugt4 (Figure 37, Appendix A) in 
mass concentrations.  

For each station, the deviation between scans per subsample was compared with the variability between 
subsamples, in the measure of RSD (Figure 38, Figure 39). It shows that RSD between scans per subsample 
varied from 7% to 48% when concentration was measured by counts (Figure 38), and that it was much larger 
when measured by mass, with RSD ranging from 25% to 124% (Figure 39, Appendix A). After averaging RSD 
from scans, the highest value was found in ARH170006 when the concentration was measured by particle 
counts. In fact, ARH170006 always had higher RSD between scans than the RSD between subsamples, with one 
exception in mass concentration (Figure 38, Figure 39). Another station, ARH170016, had a similar level of 
microplastic concentration as ARH170006 both in terms of particle counts and mass, however, it had higher 
RSD between subsamples than that between scans. The only difference between the two stations was that 
ARH170016 had a higher deposited volume (4-6%) in scans, which was 2-3 times more than that for ARH170006 
(2%). The picture held true when it comes to concentration in particle mass (Figure 39). This suggests that if a 
sample has high microplastic concentration, the overall variation is more likely attributed to the variation 
between scans. In other words, the volume of subsample matters less compared to the number of scans.  

In any case, FYNLunkebug4 always had the highest variation between subsamples compared to the variation 
between scans,  both by particle counts (Figure 38) and mass (Figure 39) despite the fact that the deposited 
volume for scans was similar to that of FYNNord and ARH170016. If comparing FYNLunkebug4 to FYNNord, 
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which had similar microplastic concentration in terms of particle counts (Figure 30), the high variation between 
subsamples could potentially be attributed to its low water content, which was 16% less than that of FYNNord 
(Figure 32). This may suggest that if the sediment is less watery, the degree of heterogeneity in subsamples 
increases as particles settle quickly after mixing. In other words, more subsample is needed to compensate for 
the high variability in subsampling for sediments with low water content.  

 

Figure 38. Relative standard deviation (RSD) on microplastic concentration between the scans, measured by particle counts 
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Figure 39. Relative standard deviation (RSD) on microplastic concentration between scans, measured by particle mass 

The variation in microplastic concentration was most pronounced when measured as mass compared to counts. 
However, the average value per subsample varied between approx. a factor 1.7 and 3.8 for concentrations 
measured as counts (Figure 40), and was 2.5 and 139 when they were measured as mass (Figure 41). For the 
latter, FYNLunkebugt4 showed by far the largest variation between means.  

 



43 
 

Figure 40. Variation on microplastic concentration by counts between the subsamples. The columns show the average value between 
scans. The error bars show the standard deviation between scans. 

 

Figure 41. Variation on microplastic concentration by mass between the subsamples. The columns show the average value between 
scans. The error bars show the standard deviation between scans. 

 

4.3.4 Relation between particle size and microplastic concentration 
The large variability of mass concentrations compared to count concentrations is because particle mass comes 
in the third power of its dimension (assuming identical shapes). A few large particles will hence dominate the 
total mass in a sample. On the other hand, many small particles will dominate the counts, but not affect the 
mass much. Figure 42 and Figure 43  and show accumulated particle sizes distributions for all stations and how 
the distribution is even for the microplastic counts, while it is skewed towards the right for the microplastic 
mass. It is this skewedness which creates the higher variability for the mass concentrations compared to the 
count concentrations.   
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Figure 42. Size distribution of identified microplastics measured as counts. The dashed grey line represents the median value of 
particle’s major dimension. X-axis is log10 scaled 
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Figure 43. Mass distribution of identified microplastics measured as counts. The light bule dashed line represents the median value of 
particle mass. X-axis is log10 scaled 

In order to minimize variability caused by the skewedness in size, we sorted particle’s major dimension into 
five size classes. The size classes were determined in line with HELCOM, aiming to generate more comparable 
results across studies. In specific, the five classes are: < 20 µm, 20-50 µm, 50-100 µm, 100-300 µm, and 300-
1000 µm. The microplastic concentration was further interpreted within each size class.  

Most of the identified microplastics sat in the range of 50-100 µm by counts, and this applied to all four stations 
(Figure 44). Among them, ARH70006 had the highest number (279 counts), while FYNNord had the lowest (119 
counts). This corresponded to a microplastic concentration by counts of 10296 counts kg-1, and 3359 counts 
kg-1, respectively (Figure 45). In all cases, the smallest size class, 10-20 µm, had the least particle counts, whilst 
the largest size range, 300-1000 µm had slightly higher counts. The lower particle number in the small size 
range was also reported by (Primpke et al. 2020), however that was only observed for the smallest possible 
particles, namely those covering one pixel in their µFTIR imagincountsg (11 µm). The number of particles 
constituting two pixels or more (>22 µm) continued to increase with decreasing size. We believe that the main 
reason here for was that Primpke et al. used much lower decision thresholds for the chemical identification of 
particle material than in our case, and also a different identification algorithm. The low number of small 
particles in our case is probably attributed to the much stricter decision threshold in comparing the sample 
spectra with the database, which was chosen to minimize false positives and increase confidence in polymer 
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identification. I.e., we prefer to err on the conservative side. The issue of struggling when identifying small 
particles is mainly due to the analytical technique we apply, namely µFTIR imaging in transmission or 
transflection mode, where the IR spectra get noisier when particles get small and thin. This is because thin 
particles absorb less IR light than thicker ones, hence yielding less signal in the IR spectrum. The low count in 
large size is in line with many other studies, for instance Haave et al. (2019), who reported that the number of 
microplastics decreased significantly above 100 µm in size in sediments from Byfjorden in Norway. 
Nevertheless, particles > 100 µm found in this study had higher concentration by counts than that in Byfjorden 
by one-two orders of magnitude.  

The problem with identifying smaller particles can in principle be addressed in the identification algorithm used 
to interpret the µFTIR imaging scans. One can chose to set the global decision thresholds lower, or one could 
selectively set the decision threshold lower for small particles compared to larger ones. Both approaches will 
yield a higher number of identified small MPs. While this will reduce the false negative identification below 
roughly 50 µm (i.e., amend the issue of ‘finding’ less very small particles), it comes at a cost of a higher false 
positive identification rate, i.e., declaring more non-plastic particles to be of plastic. What to choose hence 
becomes a question of whether the analysist prefers to err on the side of caution. I.e., to err towards an 
increase in false negative identification of the small particles or to err towards an increase in false positive 
identification of the small particles. 

 

Figure 44. Microplastic counts in four stations, with the particle’s major dimension sorted into five size classes 
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Figure 45. Microplastic concentration by counts, with the particle’s major dimension sorted into five size classes 

The microplastic concentration showed a different picture when measured by mass. In specific, particles 
between 100-300 µm constituted most of the mass concentration (Figure 46), followed by the size range of 
300-1000 µm. The concentration decreased with the decrease in size, where the concentration for size 10-20 
µm seemed negligible. The concentration difference in particle counts and particle mass provided clear 
evidence that interpreting results by lumping particles into one size class can easily hinder revealing important 
details in the sample, as large particles generate huge variability in particle mass. Hence it is suggested to sort 
the particles into multiple size classes before discussing the results.  
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Figure 46. Microplastic concentration by mass, with the particle’s major dimension sorted into five size classes 

Some final issues must be mentioned related to identifying the smallest and largest particles. For the smallest 
particles, it seems likely that recovery of the very small particles is poorer than the recovery of the larger ones, 
a conclusion which was also drawn in Section 4.3.5. This might well be even more pronounced for naturally 
occurring MPs compared to the virgin beads added to test recovery in the present study. For the very large 
particles, the issue is mainly that there are very few of them, and it becomes rather random if one is found in 
a sample or not.  

The take home message from the discussion of particle sizes versus determined concentrations can be 
condensed as follows when using µFTIR imaging as analytical tool: 

− One can rightfully expect that microplastic numbers must increase with decreasing particle size. The 
rate of increase is probably by some sort of exponential function. However, the analytics show that 
this only holds true down to roughly 50 µm particles. There are strong explanations why the analytical 
method struggles to identify the smallest microplastics. One can ‘amend’ this by using a more 
nonconservative approach to chemical identification of the smallest particles, or one can ‘be 
conservative’ and only accept those where there is high certainty on the chemical identification. 
Whatever approach is chosen, the uncertainty on the identification increases drastically below roughly 
50 µm particles. The only way around this issue would be to apply an analytical method which is more 
sensitive to the small particles, e.g., µRaman imaging which does not have the same issues with 
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chemical quantification of small particles. However, the method has other drawbacks, here among that 
it would be very problematic to at the same time analyse larger particles, and that the method requires 
more effort (i.e., cost). 

− In line with the above discussion, large microplastics occur much more seldom than small ones. While 
a few such particles do not affect the microplastic counts much, they heavily affect the microplastic 
mass, as mass comes in the third power of size. The only way to amend this issue is by finding enough 
large microplastics, so that the identified particles are representative for the sampled site. These 
particles, however, are rare, which means that large sample volumes must be analysed, which in many 
cases is not realistic in terms of costs. The mass of particles below roughly 50 µm contribute 
insignificantly to the overall mass, while the particles >100 µm dominate the mass. To achieve a better 
mass quantification, one could hence choose to focus on larger sample volumes and only analyse down 
to roughly 100 µm in size. 

− There hence is a schism between analysing microplastics with the goal of count versus mass 
quantification, the targeted size range, and keeping costs down. At the end of the day, how exactly to 
approach microplastic analysis of marine sediments remains a choice based on the specific 
requirements.  

 

4.3.5 Extraction recovery  
The chemical analysis of a subsample entails other uncertainties than the number of scans of the extract. A 
main uncertainty relates to the efficiency of the sample treatment protocol. To assess the size of this, the 
recovery was determined as presented in section 4.2.5. The recovery varied between stations as well as 
between subsamples from the same station (Figure 46). The highest recovery was found in station ARH170006, 
with an average of 93% (Appendix A). 

The recovery study indicated that it was more likely to have a stable recovery when the water content was 
high, and the organic matter content was low (Figure 48). This statement shall though be taken with some 
reservation as it is based on only one station. No correlation between detected microplastic concentrations 
and recovery could be identified (Figure 49). 

Recovery is often used to correct values obtained by the analysis. For example, FynLunkebugt4, subsample 1, 
had a recovery of 60%. One could hence choose to correct the concentrations by a factor 1/0.6. However, it is 
debatable if this is the best approach as microplastics is a diverse group of particles and materials, and a 
recovery obtained by ‘simple’ particles such as virgin beads is not necessarily identical to the recovery of 
naturally present microplastics. As the ground truth of the latter is problematic to determine, specialist 
opinions are divided on this point.  
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Figure 47. Extraction recovery for the four stations, quantified for each subsample  

 

Figure 48. Correlation between the extraction recovery and water content, as well we organic matter content 
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Figure 49. Correlation between the extraction recovery and microplastic concentration by counts, as well as by mass 

The recovery varied between the polymer type and size of the beads (Figure 50). For the same polymer type, 
larger beads had relatively higher recovery than the smaller beads, except large PE beads in FYNLunkebugt. 
When the size range was the same, heavy beads (PS) tended to yield higher recovery than the light beads (PE). 
Overall, large PS beads had the highest recovery in all stations. This suggest that using a single type or size of 
beads as the reference material for recovery test in microplastic extraction may not be representative, if 
possible, a larger variety of reference materials should be used.  

 

Figure 50. Recovery calculated for each type of beads 
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4.3.6 Blanks 
Contamination in the laboratory is a further source for uncertainty in the analysis, especially when working on 
samples with very low levels of microplastics. In the present study, the contamination as measured by the 
blanks was quite small compared to the levels found in the samples (Table 3). In cases where very low 
microplastic levels are attempted quantified, this uncertainty can though dominate the analysis.  

 

4.4 Discussions 
The relative variability between subsamples and individual scans depends on the level of microplastic 
concentration in the sediment, as well as the basic characteristics (e.g., water content) of the sediment. In 
specific, if the sediment has a high microplastic content, the variability comes more from the scans but less so 
from the subsamples. In other words, sediments with high microplastic concentration can benefit from 
analysing more scans to obtain a more reliable results, but not necessary from more subsamples. In the case 
of less polluted sediment, especially coupled with low water content, it becomes necessary to take more 
subsample to decrease the overall variability, as it is the main source of uncertainty.  

However, when it comes to reality, the actual level of microplastic concentration is difficult to know beforehand, 
which leaves the sampler nowhere to give a good “guess” on the necessary subsamples. Theoretically speaking, 
the number of subsamples analysed matters, partly to obtain a more accurate average value, and partly to 
obtain a more precise value. At the same time, a significant part of the extract should be scanned to improve 
the precision of the subsample analysis. Unfortunately, this leads to an approach where the effort to analyse a 
single sample becomes quite substantial. Current practice is to analyse one subsample applying up to three 
scans. Increasing this to analysing for example six subsamples would six-double the analysis costs. Increasing 
the number of scans is less costly, albeit there are limits to this too. It would in principle be ideal to scan all the 
extract from a subsample (Figure 27). However, a complete clean-up of marine sediment samples is not doable 
for a complex environmental matrix like marine sediments, and interfering material (particles) will be present 
even after extensive sample preparation. This means that only small aliquots of extract can be deposited per 
scan, which then means that many scans would be needed to chemically analyse the whole extract. There are 
in practice limits to how many scans can be done, as each scan requires quite some machine-time. In the 
present study, one scan took approx. 5 hours, and 2-3 scans per day could be done when working in shifts. 
Hence, doing 3 scans tied down a machine for at least a day. Increasing the number of scans for example to 20 
would allow between half and all extract from a subsample to be analysed. It would however tie down a 
machine for approx. 2 weeks, which would of course increase costs per sample analysed. How large a fraction 
to scan, or better, how many aliquots to scan, is hence a matter of cost.  

Nevertheless, a rough estimation on how much sample to take can still be obtained by several ways with the 
aim to reduce variability, for instance referring to the data from stations which are geographically close to the 
desired sampling location. Taking the Danish marine environment as an example, though stations close to land 
have microplastic concentration varying by an order of one magnitude (Liu et al, 2022, in prep), the ones far 
from land are at a similar level of concentration, with differences of only a few hundred counts kg-1. So, if the 
targeted station is geographically close to any of these already investigated stations, in other words, whether 
the targeted station is similarly close to land, or similarly far from land, one could give a rough estimation on 
the concentration level. Another approach is to have the water content analysed first, then decide if more 
subsample is necessary. This can effectively lower the effort for sample processing while still obtaining a 
reliable result.  

The uncertainty on the analysis of the large composite samples of the present study was however substantially 
smaller than the uncertainty on sampling within an area as reported by Liu et al. (2022; in prep), who studied 
variations in two areas covering approx. 1 km2 each. One was in Kattegat east of Strandby, while the other was 
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in Odense Fjord close to its mouth. They report that for microplastics measured as counts, the concentrations 
in the sampled areas varied within a factor 10.3 and 4.6, respectively. With respect to microplastics measured 
as mass, the variation in the Strandby area was more than three orders of magnitude, while it varied two orders 
of magnitude for the Odense area. Seen in this light, it would not make sense to increase the analytical accuracy 
and precision without also increasing the representativeness of the sampling, cf. section 4.1. 

Assuming the relative uncertainties of this study and the studies of Liu et al. (2022; in prep) hold, the first place 
in the ranking of the uncertainties becomes sampling in the field, which seems to be by far the largest potential 
source of uncertainty. Following that, the uncertainty in subsampling the collected samples in the laboratory, 
as well as the uncertainty in extracting and chemically analysing the extracts depends on microplastic 
concentration level and the basic characteristics of the sediment. In short, if the sample is high in microplastic 
content, the analytics cause more uncertainty than subsampling. If the sample is low in microplastic content 
and low in water content, then subsampling causes more uncertainty. But overall, it is way less significant 
compared with the sampling in the field.  

This leads to a discussion on how best to minimize the total uncertainty on microplastic quantification for the 
purpose of monitoring in marine sediments. Obviously, emphasis must be put on sampling, but also what 
happens in the laboratory once the sample has been collected plays a major role. At the same time, it must be 
affordable to analyse marine sediments for microplastics. Hence, simply measuring many samples by many 
subsamples by many scans is not a viable approach.  

Albeit ship time is expensive, at is probably worthwhile to invest a bit more time in sampling a composite 
sample covering a reasonable area. It then is worthwhile to optimize the subsampling in the lab. In principle it 
would be preferred to analyse many individual subsamples, however, this is costly. Hence it might be more 
appropriate to take a pragmatic approach, for example taking many small cores from a larger sample, mixing 
them, and then let that sample go into analysis. In terms of the chemical analysis, it would probably be 
worthwhile to increase the number of scans, at least to a minimum of three per sample, preferable more, even 
though this will increase the cost a bit.  

It also seems necessary to sort the particles into multiple size classes before interpreting the results, because 
large particles can cause increased uncertainty on the determination of mass concentration, and because small 
particles are inherently uncertain to quantify, and hence can cause increased uncertainty on the determination 
of count concentration. In addition, depending on the type of technique applied, the analytical method 
generates uncertainty which can be different between size classes. Hence it is important to sort the size into 
classes, and the results ought to be presented within each class with its own uncertainty. When comes to which 
size classes to use, recommendation can be referring to, for instance, HELCOM or OSPAR, so results can be 
more comparable across studies. The study also proved that the choice of reference material in recovery test 
affects the results significantly. Generally speaking, larger and denser polymers achieve higher recovery than 
the smaller and lighter ones. But in environmental samples, both types of polymers are expected to be present, 
hence using a single type of reference material to represent recovery for all types of polymers is insufficient, 
which could further introduce uncertainty to the results.  
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5 WP2 
5.1 Screening analysis based on Nile Red Staining for Large microplastic particles 
Different analytical techniques are currently considered for microplastic identification and quantification for 
different particles size fractions. In general, the larger size fractions (> 300 μm) are often visually identified by 
means of optical microscopy, which is a laborious and rather subjective method with relatively high risk for 
false positives and negatives (Kotar et al., 2022). It has been proposed that faster screening methods using 
staining techniques and fluorescence microscopy can improve the visual identification of plastic particles, that 
afterwards can be supplemented with chemical identification for polymer characterization (e.g., FTIR analysis). 
This screening strategy has been proposed as a potential monitoring method by OSPAR and HELCOM sea 
convention (HELCOM 2022a,b; OSPAR, 2022; Bakir et al., 2023). 

Nile Red (NR) was developed as a low cost and fast approach for the detection and quantification of 
microplastics in environmental samples with its feasibility successfully demonstrated. NR is a dye that is 
adsorbed onto the polymer surface and can fluoresce under certain light conditions, creating a fluorescent tag 
to the target plastic particles (Maes et al., 2017). Its uses has been demonstrated in experimental studies and 
also applied in a large-scale environmental sample pool, as observed in the spatial and temporal assessment 
of microplastics in United Kingdom (England and Wales) seafloor sediment, which is under the OSPAR 
framework (Kukkola et al., 2022). 

NR staining methods still requires an element of visual identification under a microscope, but with improved 
perception of plastic particles due to the characteristics of the dye to colour the polymer. In contrast, the dye 
also stains organic material that actively act an interfering particle as a common false positive. Although the 
fluorescent signal for stained organic material being slightly different from the plastic, there is still a risk for 
that be overlooked as polymer. This means that further method development for this promising staining 
technique is needed, such as the development of an automated protocol for sorting plastic from organic 
material using the fluorescent signal; as well as the use of computer-driven solutions for polymer sorting and 
their count and size distribution. Nevertheless, a more cost-effective approach could be applied by using a 
photography camera to capture the fluorescent image to increase the throughput analysis by selecting the 
polymers using image processing. In summary, these topics were investigated in this WP. The proposed 
approach combining both digital camera and imaging processing for a screening analysis of microplastic using 
Nile Red staining offer substantial benefits for more automated methods, speeding up analysis and improving 
quality in visual polymer assignment.   

A protocol evaluating different staining conditions of microplastic particles was developed and a photobox 
prototype which obtained particle images in a more accessible way was produced. It is believed this photobox 
can greatly benefit monitoring activities on large-scale sample pools. The obtained images were used to start 
the development of an automatic method for microplastic identification and their differentiation of interfering 
particles, such as organic material.  

5.1.1 Method 
Fluorescence staining methods provide a simple and sensitive approach to improve visual identification of 
plastic particles and differentiate them from interfering inorganic and organic particles. Nile Red is a 
fluorescence dye with demonstrated efficiency in terms of adsorption and signal intensity for this purpose 
(Maes et al., 2017). In this study, 0.01 mg mL-1 of NR in ethanol was prepared and applied to a steel filter system 
containing microplastic particles > 1 mm (PE, PP, PET and PA) with a mixture of spiked organic materials (marine 
plants, wood, proteins, etc.) that acted as interfering particles. The filter system (Figure 51) was placed in a 
petri dish and the NR solution incubated for 15 min. Subsequently, 100 mL of MilliQ water were flushed into 
the system to remove residual dye. Throughout the method development and for all steps of the filtration, the 
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filter system was covered with aluminum foil and kept in dark. After incubation, the filter was removed from 
the system and oven-dried (40°C) before image measurements.    

 

 

Figure 51. Steel filter system used for Nile Red staining. This filter is placed in the middle of two metal chambers with a rubber O-ring 
sealing 

An initial test was conducted to determine the condition in which optimal fluorescence signal was obtained at 
high background contrast, e.g., where the polymer was highlighted as much as possible in a dark frame 
background. To achieve that, a wooden photobox prototype was created for image acquisition (Figure 52).  
Blue and UV light (LED Party Panel RGB + UV, Eurolite) were evaluated for excitation and both orange and red 
camera lens filters (Heliopan) used to count the NR emission signal. Digital images were taken using a Canon 
M50 Mark II camera and EF-M 28 mm f/3.5 macro lens (Canon). Different exposure times that the camera 
collected light from the sample (shutter speed) were also evaluated for image acquisition applying ISO-100.  

 

Figure 52. Photobox prototype (inside) created for acquisition of Nile Red staining digital images 

Following this, an automatic method applying digital images for screening analysis of microplastic was 
evaluated. This strategy combined image pre-processing followed by image segmentation and object 
measurement. For image pre-processing, colour models were evaluated to discriminate the plastics from 
interfering particles. Colour models are mathematical descriptions of how colours can be represented as tuples 
of numbers, typically as three values. The Red-Green-Blue (RGB) colour model is the most common and it was 
compared to Hue-Saturation-Value (HSV) colour model (Yan et al., 2021). The latter provides a more intuitive 
and flexible way to represent colour by providing a better separation of colour information, as well as a better 
representation of colour range when compared to simplistic RGB colour model. For that reason, HSV is often 
preferred for image processing and computer vision applications. Image segmentation was carried out by 
selecting appropriate colour channels within a colour model that highlighted properly the plastic material. This 
strategy was validated by applying the method on a marine sediment sample collected east of Skagen, Denmark.  
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5.1.2 Results and Discussion 
An initial test was conducted to determine the conditions in which the images should be taken for this analytical 
method. Several criteria were evaluated, and the three main factors identified to obtain optimal fluorescence 
signal were light source, filter, and shutter speed. In a first assessment, blue light demonstrated the best 
performance on emphasising the polymers particles, whereas the orange filter could better differentiate them 
from spiked organic material. Furthermore, shutter speed at 0.5 seconds gave appropriate contrast between 
the particles and the background. Therefore, these setting were applied in this study. Figure 53 shows the visual 
image and stained particles under the different factors initially evaluated, and image selected (in Red) for the 
following imaging procedure using colour models.   

 

Figure 53. Visual and Nile Red-stained images of PA, PE, PET, and PP particles. Fluorescent images obtained with blue light using red 
and orange filters and applying different shutter speeds. The image highlighted in red was selected for further image processing 

Two different colour models were evaluated in this work: RGB and HSV. The latter is an alternative colour 
representation of the commonly RGB model and it was designed to better represent the eye-tracking system. 
Figure 54 shows the representation of each colour channel present by both RGB and HSV colour models.  
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Figure 54. Nile Red-stained image decomposed in three colour channels for RGB and HSV colour models 

Figure 54 shows that each colour channel feature different information from the visual image, where the colour 
bar displayed for each image refers to colour intensity. Some colour channel, for instance Red and Value are 
similar with organic material clearly visible. On the other hand, Hue demonstrated that the polymer 
information is predominant, opposed by Blue and Saturation. By having a close look at the Hue channel for 
outlier pixels, the polymer particles can even be highlighted by simply removing them. This can be followed by 
selecting a pixel value threshold for image segmentation, as shown in Figure 5549. This highlights the 
importance of examining outliers when dealing with digital images, which is related to the camera sensor and 
colour model transformation.  

 

Figure 55. Visualization of outlier pixels and image segmentation on the Hue colour channel of a Nile Red-stained image 

Doing a few image processing steps allows image segmentation, separating target particles from the 
background and interfering elements. This can greatly improve the visual analysis of microplastics by directing 
the target particles that should be further validated chemically. This automatically driven strategy was applied 
to a sediment sample for performance evaluation, as it can be seen on Figure 56. The selected particles were 
handpicked and validated chemically using infrared spectroscopy. The particles were positively identified as 
plastic, and they were PE, PVC, and paint flake. This demonstrates the strategy feasibility to correctly sort the 
plastic particles from interfering materials. 

 

Figure 56. Automated image processing using Nile Red applied to a sediment sample (Skagen, DK) 

This automated image process approach improves the visual analysis of large microplastics (> 1 mm), which is 
still a common procedure for particle identification. This screening strategy reduces the bias and false positive 
rates on the selection of particles by discriminating the interfering particles. In addition, it improves the 
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throughput analysis by directing the particles to be handpicked and further analysed, despite of general 
information about the plastic particles being already the method output. The proposed strategy can be 
effectively utilized for microplastic analysis in various environmental compartments, including sediment, water 
(via mantra trawling), and biota, provided that appropriate sample processing is carried out. Nile Red, as 
suggested by both OPAM and HELCOM, offers a promising method for monitoring activities due to its simplicity 
and cost-effectiveness, as evidenced by the results of this study. While the study's focus was on particles larger 
than 1 mm, this approach can be extended to smaller particles, as long as they can be selected manually for 
further analysis without requiring higher magnification equipment. Moreover, there is potential to use this 
technique for characterization of polymers, however further investigations are needed. 

 

5.2 Machine Learning Strategy for Microplastic Characterization and Quantification for small 
microplastic particles 

The common pipeline for microplastic identification comprises several steps ranging from sampling to sample 
processing to separating and purifying MPs from the media prior the polymer characterization (Mattsson et al., 
2021). After the sample processing, the microplastics are usually membrane filtered for further 
characterization, where the polymeric particles are chemically identified, listed, and reported, for instance, 
according to the categories established on AMAP and OSPAR monitoring guidelines. Several analytical 
techniques have been applied for microplastic characterization and infrared microscopy (µ-FTIR hyperspectral 
imaging) is the most common and currently the state-of-the-art for identification of small microplastic (< 300 
µm) (Elkhatib and Oyanedel-Craver, 2020; Mattsson et al., 2021). This technique has the advantage of collecting 
chemical and spatial information of several particles at the same time by automated mapping of a sample, 
allowing the analysis of small microplastics without manual sorting and the estimation of particle features such 
as their area and diameters (Löder et al., 2015). 

µ-FTIR hyperspectral imaging produces complex and large amounts of information (millions of spectra), which 
suggests the use of automatic analyses to transform huge dataset into information. There are available 
different approaches on how to deal with such dataset, ranging from library search approach (correlation to a 
reference library) to more advanced machine learning strategies (Löder et al., 2015; da Silva et al., 2020). The 
latter often applies several data pre-processing strategies, exploratory analysis, and multiclass models that 
embrace the reality of plastics that are more common in the environment. Therefore, it is proposed that with 
the correct data pre-treatment and appropriate selection of hyperspectral data analysis approaches, we can 
fuel the development of methods to automate the quantification and identification of microplastics from an 
environmental sample, including the validation steps as a central aspect of the method to performance 
evaluation. The latter also brings benefits for how different methods can be compared in monitoring activities 
by referring to the validation attributes.  

This WP investigates and develops an analytical method for characterization of MPs using μ-FTIR imaging and 
machine learning. Different multivariate techniques (PCA, SIMCA and PLS-DA) were orderly evaluated to 
retrieve the microplastic information of small microplastic (< 300 µm) of µ-FTIR imaging measurements. It is 
proposed that with the correct data pre-treatment and appropriate selection of hyperspectral data analysis 
approaches, we can fuel the development of a method to automate the quantification and identification of 
MPs from environmental samples. The results of these studies are likely to lead to improved data processing 
protocols and the development of more robust analytical identification methods, also with a focus on data 
quality assurance and quality control, including validation processes to reduce bias and sources of error. 

5.2.1 Method 
Microplastics of the most common commercial plastics (PE, PET, PMMA, PVC, PC, PUR, PA, PS, ABS and PBT) 
was produced and kept as a reference to aid with the identification of plastic taken from the environment. 
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These polymers were grounded into small pieces using a metal grinder. The material was sieved and particles 
from 10 to 300 µm were placed on a Silicon (Si) filter, which is a quite newly developed membrane that allows 
the IR fingerprint region to be collected in transmission measurements. One membrane for each polymer and 
a mixture of all microplastics spiked with natural matter were produced and analysed using a μ-FTIR 
hyperspectral imaging system (Cary 620 FTIR microscope coupled with a Cary 670 FTIR spectrometer from 
Agilent Technologies).  

A machine learning approach applying hierarchical analysis (HA) was evaluated to retrieve the microplastic 
information of hyperspectral images. HA combines different multivariate models/methods to sort the different 
spectral information in subsequent levels to obtain the target particles in a fully automated method. This helps 
to provide insights of multivariate models appropriated for different aspects of the analytical pipeline based 
on spectroscopy and machine learning. The Figure 57shows the workflow proposed and developed for 
microplastic characterization. 

  

Figure 57. Workflow of the FTIR data processing and the multivariate technique applied in each step on the hierarchical analysis 

Principal Component Analysis (PCA), which provide the source of data variability, was firstly applied for 
selection of the region of interest, i.e., particle information. Soft Independent Modelling Class Analysis (SIMCA) 
was subsequently applied to sort out the natural matter and microplastic information (STEP 2, Figure 57), 
where the latter was further used for polymer discrimination applying Partial Least Squares-Discriminate 
Analysis (PLS-DA - STEP 3, Figure 57).  STEP 2 and 3 are classification models and were validated based on true 
positive rate (sensitivity, Sn), true negative rate (Specificity, Sp) and misclassification applied to an image with 
a mixture of polymer and interfering particles (Fielding and Bell 1997) with a workflow described in Figure 58.  
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Figure 58. Workflow applied in this work for the development of classification models (STEP 2 and STEP 3) where the sample set was 
subdivided into calibration and validation. The later was used for performance evaluation of the models 

Detailed information about the particles was obtained by using the spatial information of the image for particle 
counting and size distribution. The latter were further investigated to assess their variability in relation to the 
two common ways of reporting the particle size: (1) Length (Maximum diameter) and (2) Filter Cut-off 
(Minimum Diameter). Feret diameter was calculated for an imaging and the number of particles was reported 
based on both maximum and minimum diameter for comparison and discussion on how these numbers can 
affect the reported number of particles. 

 

5.2.2 Results and discussion 
Hierarchical analysis was a feasible approach to deal with three major information contained in the dataset: 
background (membrane), MPs (target information) and Natural Matter (interfering particles, which often occur 
despite sample processing). Different spectra pre-processing was evaluated, and the best results were obtained 
with 1st derivative (Savitzky-Golay, 2nd order polynomial and 15 window width) and normalization (Inf-Norm). 
Moreover, the sample spectra were cut off in the range of 2600–2000 cm-1 to eliminate the CO2 signal that is 
not chemically related to the sample.  

PCA successfully selected the region of interest by removing any pixels not related to the particles in the image, 
which reduces processing time and the risk for false positive identification. This spatial pre-processing was 
made using the score frequency histogram obtained from PCA realized on the hyperspectral images. Both 
SIMCA (STEP 2) and PLS-DA (STEP 3) models showed great average sensitivity (Sn ≅ 1) and specificity (Sp ≅ 1) 
for sorting natural matter and discriminating the polymer types. As for misclassification error, an average of 3% 
and 0.2% were obtained on STEP 2 and STEP 3, respectively. These evaluation parameters are used to estimate 
the probability of pixels belonging or not belonging to the correct target category and are good examples of 
method robustness evaluation that can be applied when reporting and comparing microplastic data in different 
analytical techniques/methods, i.e., validation and performance data. Figure 59 shows the results of one 
sample imaging containing a mixture of plastics and natural matter in each step of the hierarchical analysis.  
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Figure 59. Results of one image sample containing a mixture of plastic and natural matter in each step of the hierarchical analysis 

The results clearly show the discrimination of the major content information in Si filter. This methodology can 
be applied for different sample matrixes, as long as the sample is previously processed for microplastic 
separation and purification. The proposed method can speed up data analyses, improve quality and 
reproducibility in polymer assignments, as well as it demonstrates an approach to fully harness the potential 
of μ-FTIR hyperspectral imaging for quantifying and qualifying microplastics. Finally, morphological information 
about the samples can be obtained using the predicted final images, for instance, particles size and their 
frequency, as seen in Figure 60. Here, the size distribution was based on the maximum Feret diameter and all 
spectra from the predicted particles can be examined for QA/QC.  

 

  

Figure 60. PE predicted image with the particle counts and size distribution. Infrared spectra of all PE particles displayed 

Particle counts and size distributions are usually defined by a size range, e.g., 50–100 µm and/or 1–5 mm. 
However, these numbers vary greatly depending whether the reporting data is based on the individual 
particle’s diameter (longest dimension – length) or mesh size of the filters used in sample processing (smallest 
dimension – filter cut-off). This is especially important for reliable comparison of produced datasets in both 
research and monitoring activities for assessment of microplastic pollution. Feret diameter is often used for 
this purpose where the maximum and minimum diameter are obtained referring to particle’s length and filter 
cut-off, respectively. A comparison of particle counts obtained using is both Max. and Min. Feret (microplastic > 
50 µm) were carried out to a predicted image containing only PE particles, Figure 61. The result shows that the 
number of particles was halved when the filter cut-off was used for calculating particle frequency. This suggests 
the necessity for standard definitions on how the particles size and frequency should be calculated and/or 
reported in research and monitoring activities to be able to compare results, since it can vary significantly on 
the strategy applied. There are no standard procedure guidelines available regarding particle counts. However, 
it sheds light on the importance of at least reporting the chosen calculation rather than stating only the number 
of particles identified.  
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Figure 61. Predicted image for PE and their particle counts (> 50 µm). Particle amount calculation based on maximum and minimum 
Feret diameter 

The approach presented in this study offers a wealth of information that can aid in the characterization and 
tracing of microplastics from different sources in environmental samples. However, it is essential to properly 
process and extract microplastics from the target matrix to obtain accurate results. This strategy can be 
effectively implemented for monitoring activities using the parameters presented here. In case data from 
another instrument or source is used, a calibration transfer must be established before conducting any analysis. 
Nonetheless, the method can be replicated using all the provided information in any other µFTIR instrument. 
Furthermore, the approach can be updated to include other polymers or classes, depending on the research 
needs.   
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6 WP3 
Evaluation of sampling methods for microplastics in surface water and water column. 

The most appropriate sampling technique for microplastics is defined by the targeted compartment (e.g., 
beaches, sublittoral sediments, sea surface, water column) as well as the subsequent processing and analysis 
capabilities. The latter sets the bar for what can be achieved in terms of analytical output, such as how small 
microplastics can be reliably identified, if polymer types can be identified, if particle size and shape can be 
identified, et cetera. What shall be achieved in terms of microplastic analysis must hence be considered when 
planning a monitoring strategy.  

 

6.1 Sampling with different techniques 
Taking bulk-samples of sea surface water (e.g., Ng et al., 2006; Norén, 2007) or the water column, e.g., with 
Niskin bottles attached to a rosette sampler (Bagaev et al., 2017; Courtene-Jones et al., 2017; Kanhai et al., 
2018), is the exception. Typically, the sea surface is sampled by trawling a net alongside a vessel for a certain 
amount of time. The two most common net versions are manta trawls and neuston nets with a mesh size of 
around 300 µm (e.g., Collignon et al., 2012; de Lucia et al., 2018; Tamminga et al., 2018; Vianello et al., 2018; 
Frias et al., 2020; Ferrero et al., 2022), which are also recommended by the Marine Strategy Framework 
Directive (MSFD) guidelines (Hanke et al., 2013; Gago et al., 2018). Examples of other devices which have been 
used are the AVANI trawl (Eriksen et al., 2018), plankton (WP2) nets (Gorokhova, 2015; de Lucia et al., 2018), 
and a neuston catamaran (Löder et al., 2015; Kirstein et al., 2016; Lorenz et al., 2019). For a volume-reduced 
sampling of the water column, either sub-surface trawls with bongo nets (Doyle et al., 2011; Beer et al., 2018; 
Rist et al., 2020) or special ‘multi-level-trawls’ have been performed (Reisser et al., 2015; Kooi et al., 2016). 
Alternatively, a device termed the Continuous Plankton Recorder (Thompson et al., 2004) or various pumping 
systems coupled to filtering units with varying mesh size have been used (e.g., Lusher et al., 2014; Enders et 
al., 2015; Kanhai et al., 2017; Zobkov et al., 2019; Rist et al., 2020; Tekman et al., 2020; Liu et al., 2023; 
Kuddithamby et al., 2023). The advantage over bulk-sampling methods is that a larger water volume can be 
sampled. Another aspect to consider when using volume-reduced sampling with nets and pumps is that the 
size of the smallest microplastics to quantify is already influenced during sampling by the mesh or filter size 
used. 

Historically, most studies target microplastics floating at the sea surface since these are more easily accessible. 
Figure 6256 provides a selection of studies (n=26) reporting microplastic concentrations in surface and sub-
surface waters (n=44). Apart from the sampling location, the sampling method, e.g., Manta Trawl, Neuston net, 
plankton net, pump-filtration system with the respective mesh size is noted. The average sampled volume is 
indicated, if provided by the authors, as well as the analysed size range. Utilized filter or mesh sizes divided on 
ranges were 10–50 µm (n=7), 51–150 µm (n=11), 151–250 µm (n=3), 251–350 µm (n=20), and 451–550 µm 
(n=3). Approximately half of the studies (n=26) provided the average sampled volume, which ranged from 5 L 
(Di Mauro et al., 2017) to 614 m3 (de Lucia et al., 2014). Most of the selected studies (n=18) applied 
spectroscopic methods, i.e., FTIR or Raman, to verify at least a subset of visually pre-selected microplastics. A 
few of these studies (n=6), utilized FPA-based FTIR imaging or automated single-particle exploration coupled 
to µRaman to analyse small microplastics (11–500 µm), which makes the analysis independent of bias from 
visual pre-selection (Cabernard et al., 2018; Lorenz et al., 2019; Rist et al., 2020; Tekman et al., 2020; 
Kuddithamby et al., 2023; Liu et al., 2023).  

Figure 62shows that, while not conclusively so, there is a tendency that studies using a smaller size limit for 
sampling and identification also detect more microplastic particles. This is most notable when comparing 
studies conducted in the same oceanographic region. For the central western Mediterranean, for example, 
Suaria et al. (2016), sampling with a 200 µm net and analysing microplastics down to 200 µm, found average 
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concentrations one order of magnitude higher than de Lucia et al. (2014), sampling with a 500 µm net and 
analysing microplastics down to 500 µm. A similar observation can be made from studies focusing on the 
English Channel and the North Sea. While Maes et al. (2017) sampled with a 333 µm net and reported an 
average microplastic concentration of 0.14 counts m-3, not specifying the analysed size range, Lindeque et al. 
(2020), sampling with a net with the same mesh size, reported a concentration of 4 counts m-3 (11–5000 µm). 
In turn, when sampling with a 100 µm net, Lindeque et al. (2020) reported an average microplastic 
concentration of 10 counts m-3 (11–5000 µm), which is the same order of magnitude as reported Lorenz et al. 
(2019) (27 counts m-3, 11–5000 µm). In general, very few studies on marine surface waters have included 
microplastics down to 11 µm in their analysis. Cabernard et al. (2018) analysed a subset of the samples analysed 
by Lorenz et al. (2019) with single-particle exploration µRaman and found, in the size range of 10–5000 µm, 
microplastic concentrations of 38–2621 counts m-3. These were an order of magnitude higher than the ones 
reported by Lorenz et al. (2019) (5–245 counts m-3). Cabernard et al. (2018) ascribed this difference to the 
analysis technique and identification approach, which might indicate that single-particle exploration µRaman 
had an advantage in automatic identification, especially of small-sized microplastics. 

 

Figure 62. A selection of studies having analysed the concentration of microplastics in marine waters. The bars show the recorded 
range of microplastic concentrations, and the dots mark the mean concentrations in particles per m3 (counts m-3). The studies are 
grouped according to oceanographic region. The greyscale of the bars refers to the mesh size used from 10–50 µm (gray), over 50–150 
µm (blue), 150–250 µm (green), 250–350 µm (red) to 450–550 µm (yellow). Note that the studies used quite different analytical 
methods, of which some are better than others in discerning small microplastics. Partly after Lorenz (2021). 
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Another study analysing microplastics in the size range 10–5000 µm and using Raman spectroscopy and 
presented in Figure 62, was done by Enders et al. (2015). They found microplastic concentrations of 13–501 
counts m-3 with the highest concentration recorded in the English Channel and the second highest in the North 
Sea close to the English Channel (approx. 400 counts m-3). This is in the same order of magnitude as the highest 
concentration (245 counts m-3) recorded in the study of Lorenz et al. (2019), detected at a station near the 
English Channel as well. The slightly higher concentration might be explained by the sampling setup since 
Enders et al. (2015) used a pumped system with 10 µm filters and Lorenz et al. (2019) used a 100 µm mesh 
Neuston net and analysed down to 11 µm in size, hence microplastic concentrations in the size range 11–100 
µm (on average 26.4 ± 53 counts m-3) should be considered as semi-quantitative and are likely higher than 
reported. 

Another study (Tekman et al., 2020) used a pumped system as well with 32 µm filters and recorded 
microplastics in size range of 11–5000 µm in Arctic surface waters, showing that the lowest microplastic 
concentration (113–262 counts m-3) in these waters was in the same order of magnitude as the highest in the 
southern North Sea (245 counts m-3, Lorenz et al., 2019) and that the highest (1287 counts m-3) was even one 
order of magnitude higher. The discrepancy might for one be explained again with the smaller mesh size of the 
sampling equipment or, as indicated by Tekman et al. (2020), by the Arctic Ocean being an accumulation zone 
for microplastic pollution.  

Another issue for inter-study comparison is the reporting unit. Some studies provide concentrations in 
microplastic counts per m3, other provide abundances in microplastic counts per km2 and some do both. This 
highlights the importance of acquiring high-resolution data, e.g., the sampled water volume and surface area 
that allow for the conversion of microplastic counts per m3 to microplastic counts per km2 and vice versa, to 
facilitate comparison between different studies. A further issue relates to measuring plastic items as counts, 
as one ‘big’ microplastic particle will count as much as one ‘small’ particle. While there are good reasons to 
quantify microplastics by how many items there is in an environment, this unit is less suited for other purposes, 
for example when comparing to sources of microplastics. If it for example is known that a certain source 
contributes X tons of plastic per year into the marine environment, measuring counts in the environment 
cannot readily be linked back to that source contribution as there is no simple conversion factor between 
microplastics counts and microplastic mass.  

  

6.2 Experimental comparison of sampling techniques 
Comparing data from sampling with nets which followed the latest international recommendations (AMAP, 
2021; HELCOM BLUES, 2022; JRC, 2022) showed significantly less variability compared to the variability 
depicted in Figure 62(Section 6.2.1).  

Comparing sampling applying nets versus sampling by pumped filtration has only been done by very few studies. 
In sections 4.3.2.1 and 4.3.2.2, two examples of datasets are given which illustrate the difference when 
sampling the same water bodies in parallel.  

  

6.2.1 Case study: Coastal waters around Sjælland  
A study was carried out in 2022 for establishing a monitoring strategy to assess the abundance of floating 
microlitter in the surface layer of Danish coastal marine waters. The study applied the latest international 
recommendations (AMAP, 2021; HELCOM BLUES, 2022; JRC, 2022) for routine sampling, analysis, and data 
reporting of MPs (Simon et al., 2023).  
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Microlitter > 300 µm was collected at seven coastal locations around Sjælland, Denmark, using a manta trawl. 
The collected microlitter particles were sieved into size fractions > 5 mm, 1–5 mm and 0.3–1 mm and first 
assessed visually to hand-pick microplastic-like particles and fibres. The number and concentrations of 
identified microlitter at each sampling station are listed in . The median microplastic concentration was 0.057 
particles m-3, and a maximum concentration of 0.213 particles m-3, indicating low contamination levels of the 
investigated marine surface waters. This level is also comparable with findings in other published studies from 
the Baltic Sea (Tamminga et al., 2018; Scönlau et al., 2020) and by Lorenz et al. (in preparation) as shown in  . 

Spectroscopic characterisation of a subset of selected MP-like particles and fibres by FTIR-ATR technique 
followed the visual assessment for validation. The plastic origin of 90% of the particles subjected to FTIR-ATR 
was confirmed. The rest of the MP-like particles and fibres were identified as cellulose, protein, or their 
material could not be determined based on their collected IR spectra. Most MPs were of PE (65%), including 
PE-acrylic acid co-polymer, while the second most abundant polymer type was PP (24%).  

 

 

Figure 63 . Microplastic concentrations in the Baltic Sea by manta trawl surveys in different scientific studies in 2015-2022 (reviewed) 
marked with circles and compared to recent data from Danish coastal waters marked with triangles and squares (Simon et al., 2023; 
Lorenz et al., in preparation). The red-yellow and blue-yellow striped points indicate that concentrations both below and above 1 and 
below and above 0.1 item m-3 were measured, respectively. 

Similar to other internationally published studies, the present study finds that inter-sample variability can be 
high. Thus, sampling and analysing at least 2-3 replicate samples from each site should be implemented more 
widely in monitoring frameworks. Additionally, more than one sampling event per year per site should be 
considered. It was also concluded that a minimum sampling volume of 100 m3 of surface water is required to 
collect a representative sample in line with recommendations in the international monitoring guidelines for 
manta trawl surveys. 

Table 4. The concentration of visually identified microplastic fibres and particles and the calculated sampled volume of each analysed 
sample. 
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Sample Sample 
volume 

[m3] 

 Concentration [item m-3] 

 Fibres Particles Total 

Køge Bugt, Brøndby st T1 193  0.047 0.010 0.057 
Køge Bugt, Brøndby st T2 173  0 0.006 0.006 
Sejerøbugten, Gudmindrup 222  0.036 0 0.036 
Køge Bugt, Kofoeds enge T1 183  0.005 0.005 0.011 
Køge Bugt, Kofoeds enge T2 185  0.005 0.07 0.076 
Østfalster, Pomlenakke 172  0.035 0.017 0.052 
Roskilde Bredning, Risø 184  0.011 0.005 0.016 
Roskilde Vig East I T1 184  0.027 0.016 0.043 
Roskilde Vig East I T2 126  0.095 0.095 0.191 
Roskilde Vig West I T3 162  0.056 0.037 0.093 
Roskilde Vig West I T1 135  0.081 0.030 0.111 
Roskilde Vig East II T1 149  0.047 0.134 0.181 
Roskilde Vig East II T2 85  0.047 0.166 0.213 
Roskilde Vig West II T1 140  0.057 0.021 0.078 
Roskilde Vig West II T2 130  0.031 0 0.031 

 

 

6.2.2 Case study: Greenland 
Sampling was done with horizontal tows of a bongo net just below the surface (300 µm) and the AAU-UFO 
pump-filtration system (10 µm stainless steel mesh) at 5 m water depth in the Nuup Kangerlua fjord in 
Greenland (Rist et al., 2020). The results are presented in , showing approx. a factor 1000 difference in mean 
concentrations. There seemed to be no clear correlation between concentrations obtained by the two 
techniques (Table 5). If any, there might be a weak positive correlation between counts obtained by the two 
techniques. However, using one to estimate the other seems problematic.  

Table 5. Results from a case study conducted in the Nuup fjord in Greenland (Rist et al., 2020). Sampling was conducted with the AAU 
UFO pump filtration system (10-300 µm) and in parallel with a bongo net (mesh size 300 µm) 

Transect  
AAU-UFO pump  

(Microplastics 11-500 µm) 
Bongo-net  

(Microplastics 300-5000 µm) 
Microplastic [counts m-3] Microplastics [counts m-3] 

ST.1  107 0 
ST.2  91 0.12 
ST.3  68 0.11 
ST.4  278 0.08 
ST.5  241 0.4 
ST.6  178 0.23 
Mean 160.5 0.157 
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Figure 64. Comparison of concentrations found by samples collected by AAU-UFO pump system and Bongo-net, Greenland 

  

6.2.3 Case study: Limfjord 
A second study applying a Manta net for surface water sampling and the same pumped filtration system as in 
the Greenland study (Rist et al., 2020) showed similar large differences in concentrations (Table 6). The 
difference in mean concentration between the two sampling techniques was more than three orders of 
magnitude. There seemed to be no clear correlation between concentrations obtained by the two techniques 
(Figure 65). If any, there might be a weak negative correlation between counts obtained by the two techniques. 
However, using one to estimate the other seems problematic. 

Table 6. Preliminary results from a case study in the Limfjord in August 2020 (Lorenz et al., in prep). Sampling was conducted with the 
AAU UFO pump filtration system (10-300 µm) and in parallel with a Manta net (mesh size 300 µm). 

  AAU-UFO pump  
(Microplastics 11-500 µm) 

Bongo-net  
(Microplastics 300-5000 µm) 

Transect  Microplastics 
[counts m-3] 

Sampled volume 
[m3] 

Microplastics 
[counts m-3] 

Sampled volume 
[m3] 

1 143 0.77 n.d. 134.86 
2 201 1.20 0.21 237.00 
3 68 0.63 0.14 140.00 
4 54 1.00 0.16 243.00 
5 107 0.71 0.32 96.00 
6 1720 1.00 n.d. n.d. 
7 1188 1.01 0.06 94.00 
8 600 0.90 0.04 336.00 
Mean 510 0.90 0.155 182.98 
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Figure 65. Comparison of concentrations found by samples collected by AAU-UFO pump system and Manta net, Limfjord 

6.2.4 Other studies comparing pump and net sampling 
A few other studies have looked into the comparison of pump water samples and net samples. Tamminga et 
al. (2019) investigated the representativeness of pump water samples versus manta sampling in freshwater 
environments and found that for sample volumes of 3 m3 and considering only microplastics >300 µm, pump 
samples showed generally higher microplastics concentrations than net samples. Similar results were found by 
Schönlau et al. (2020) for Baltic Sea surface waters, comparing Manta net and pumped filtration for 
microplastics >300 µm. A study by Setälä et al. (2016), comparing samples from a manta net (333 µm) and a 
submerged pump (300 µm), found higher microplastic concentrations for pumped samples but the difference 
was not significant. 

 

6.3 Discussion 
The comparison of different sampling techniques shows that the variability in results is large, some of it being 
due to the sampling and some of it being due to the subsequent analysis. Most, if not all, of the studies were 
done for other purposes than marine monitoring, and opportunistically using them as input to marine 
monitoring must hence be done with care. 

Following the latest recommended standards reduces the variability significantly. It can in this case not be 
excluded that the observed variability is due to differences in actual concentrations, and only to a lesser degree 
due uncertainties caused by sampling and analysis. There is though no solid proof hereof.  

Comparing sampling with nets to sampling using pumped filtration show that these methods yield quite 
different results which are not readily comparable. Which technique to use should hence be governed by the 
target of the study. Which approach is the better, or even the least costly, in terms of monitoring spatial and 
temporal variations in microplastics content in the marine environment cannot be evaluated based on the 
information available.  
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8 Appendix A 
 

Table 7. Detailed microplastic concentration and recovery for ARH170016. RSD stands for relative standard deviation (%) 

ARH170016 
Wet 

weight 
(g) 

Water 
content 

(%) 

Organic 
matter 
content 

(%) 

Concentrated 
volume 

(mL) 

Aliquots for 
analysis 

Aliquot 
volume 

(mL) 

Microplastic 
counts found 
in the scans 

[counts] 

Microplastic 
mass found in 

the scans 
[µg] 

Microplastic 
number 

concentration 
[counts/kg] 

Microplastic 
mass 

concentration 
[µg/kg] 

Recovery 

Sub_1 96.15 78.19 12.58 5 

1 0.2 8 2.35 2080 611 0.53 
2 0.2 13 0.35 3380 91 0.66 
3 0.2 20 4.58 5200 1190 0.69 

average 0.2 14 2.43 3553 631 0.63 
RSD 

between 
scans [%] 

   44 87  

Sub_2 85.52 77.41 12.29 5 

1 0.3 36 3.02 7016 589 0.44 
2 0.3 41 2.66 7990 519 0.27 
3 0.3 40 1.72 7795 335 0.33 

average 0.3 39 2.47 7600 481 0.35 
RSD 

between 
scans [%] 

   7 27  

Sub_3 100.03 78.34 12.86 5 

1 0.2 44 5.86 10997 1465 0.38 
2 0.2 24 2.45 5998 613 0.34 
3 0.2 38 6.40 9497 1598 0.38 

average 0.2 35 4.90 8831 1225 0.37 
RSD 

between 
scans [%] 

   29 44  

Sub_4 93.53 77.75 13.29 5 

1 0.2 47 8.10 12563 2164 0.66 
2 0.2 54 12.67 14434 3387 0.72 
3 0.2 40 1.96 10692 524 0.63 

average 0.2 47 7.58 12563 2025 0.67 
RSD 

between 
scans [%] 

   15 71  
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Sub_5 99.46 78.34 12.40 5 

1 0.2 43 3.57 10808 897 0.78 
2 0.2 64 8.23 16087 2069 0.53 
3 0.2 29 11.75 7289 2953 0.75 

average 0.2 45 7.85 11395 1973 0.69 
RSD 

between 
scans [%] 

   39 52  

Sub_6 103.08 77.77 12.64 5 

1 0.2 57 5.01 13824 1216 0.69 
2 0.2 57 6.08 13824 1474 0.72 
3 0.2 52 3.70 12612 896 0.88 

average 0.2 55 4.93 13420 1195 0.76 
RSD 

between 
scans [%] 

   5 25  

     

Average 
RSD 

between 
scans [%] 

   23 51  

     

RSD 
between 

subsamples 
[%] 

   38 52  

 

 

Table 8. Detailed microplastic concentration and recovery for FYNNord. RSD stands for relative standard deviation (%) 

FYNNord 
 

Wet 
weight 

(g) 

Water 
content 

(%) 

Organic 
matter 
content  

(%) 

Concentrated 
volume 

(mL) 

Aliquots 
for 

analysis 

Aliquot 
volume 

(mL) 

Microplastic 
counts 

found in the 
scans 

[counts] 

Microplastic 
mass found in 

the scans 
[µg] 

Microplastic 
number 

concentration 
[counts/kg] 

Microplastic 
mass 

concentration 
[µg/kg] 

Recovery 

Sub_1 134.84 68.35 8.53 5 

1 0.3 - - - - 0.83 
2 0.3 30 2.51 3708 311 0.75 
3 0.3 53 11.91 6551 1473 0.71 

average 0.3 42 7.21 5130 892 0.76 
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RSD 
between 
scans [%] 

   39 92  

Sub_2 137.31 68.53 8.74 5 

1 0.3 19 3.28 2306 398 0.40 
2 0.3 22 0.69 2670 84 0.60 
3 0.3 21 3.06 2549 371 0.40 

average 0.3 21 2.34 2508 284 0.47 
RSD 

between 
scans [%] 

   7 61  

Sub_3 134.42 68.16 8.87 5 

1 0.2 10 0.18 1860 34 0.56 
2 0.2 9 2.27 1674 422 0.34 
3 0.2 12 0.74 2232 137 0.66 

average 0.2 10 1.06 1922 198 0.52 
RSD 

between 
scans [%] 

   15 102  

Sub_4 135.82 68.54 8.85 5 

1 0.2 17 0.89 3129 164 0.59 
2 0.2 18 1.71 3313 314 0.91 
3 0.2 24 2.22 4418 409 0.63 

average 0.2 20 1.61 3620 296 0.71 
RSD 

between 
scans [%] 

   19 42  

Sub_5 148.09 68.09 8.95 5 

1 0.2 18 2.69 3039 454 0.69 
2 0.2 23 1.18 3883 199 0.63 
3 0.2 30 2.52 5064 426 0.53 

average 0.2 24 2.13 3995 360 0.62 
RSD 

between 
scans [%] 

   25 39  

Sub_6 132.19 68.61 9.00 5 

1 0.2 10 0.55 1891 105 0.59 
2 0.2 23 1.13 4350 214 0.53 
3 0.2 14 1.30 2648 246 0.66 

average 0.2 16 0.99 2963 188 0.59 
RSD 

between 
scans [%] 

   42 39  
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Average 
RSD 

between 
scans [%] 

   25 63  

     

RSD 
between 
subsampl

es [%] 

   34 71  

 

 

Table 9. Detailed microplastic concentration and recovery for FYNLunkebugt4. RSD stands for relative standard deviation (%) 

FYNLunke-
bugt4 

 

Wet 
weight 

(g) 

Water 
content 

(%) 

Organic 
matter 
content  

(%) 

Concentrated 
volume 

(mL) 

Aliquots 
for 

analysis 

Aliquot 
volume 

(mL) 

Microplastic 
counts 

found in the 
scans 

[counts] 

Microplastic 
mass found in 

the scans 
[µg] 

Microplastic 
number 

concentration 
[counts/kg] 

Microplastic 
mass 

concentration 
[µg/kg] 

Recovery 

Sub_1 205.10 54.18 1.84 5 

1 0.2 37 37.31 4510 4548 0.59 
2 0.2 30 175.27 3657 21364 0.69 
3 0.2 57 5.76 6948 702 0.53 

average 0.2 41 72.78 5038 8871 0.60 
RSD 

between 
scans [%] 

   34 124  

Sub_2 212.55 45.99 2.16 5 

1 0.2 45 3.56 5293 418 0.88 
2 0.2 33 4.29 3881 505 0.50 
3 0.2 34 5.23 3999 615 0.50 
4 0.2 46 3.97 5410 467 0.63 
5 0.2 30 15.31 3529 1801 0.81 

average 0.2 38 6.5 4422.4 761.2 0.7 
RSD 

between 
scans [%] 

   20 77  

Sub_3 202.62 54.13 1.87 5 

1 0.2 33 1.37 4072 170 0.47 
2 0.2 26 2.89 3208 357 0.47 
3 0.2 31 2.24 3825 277 0.44 

average 0.2 30 2.17 3702 268 0.46 
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RSD 
between 
scans [%] 

   12 35  

Sub_4 232.11 53.29 1.87 5 

1 0.2 18 0.96 1939 103 0.41 
2 0.2 23 0.63 2477 68 0.53 
3 0.2 13 0.20 1400 21 0.41 

average 0.2 18 0.60 1939 64 0.45 
RSD 

between 
scans [%] 

   28 64  

Sub_5 213.55 53.84 
 

2.16 
 

5 

1 0.3 25 5.47 1951 427 0.29 
2 0.3 11 0.95 859 74 0.38 
3 0.3 21 4.08 1639 318 0.27 

average 0.3 19 3.50 1483 273 0.31 
RSD 

between 
scans [%] 

   38 66  

Sub_6 176.66 53.39 1.87 5 

1 0.2 20 2.13 2830 301 0.53 
2 0.2 12 3.67 1698 519 0.47 
3 0.2 24 14.53 3396 2056 0.66 

average 0.2 19 6.78 2641 959 0.55 
RSD 

between 
scans [%] 

   33 100  

     

Average 
RSD 

between 
scans [%] 

   27 78  

     

RSD 
between 
subsampl

es [%] 

   44 185  

 

 

Table 10. Detailed microplastic concentration and recovery for ARH170006. RSD stands for relative standard deviation (%) 
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ARH170006 
Wet 

weight 
(g) 

Water 
content 

(%) 

Organic 
matter 
content  

(%) 

Concentrated 
volume 

(mL) 

Aliquot for 
analysis 

Aliquot 
volume 

(mL) 

Microplastic 
counts found 
in the scans 

[counts] 

Microplastic 
mass found 
in the scans 

[µg] 

Microplastic 
number 

concentration 
[item/kg] 

Microplastic 
mass 

concentration 
[µg/kg] 

Recovery 
 

Sub_1 113.39 72.68 2.53 5 

1 0.1 19 1.11 8378 487 1.00 
2 0.1 19 0.37 8378 163 1.00 
3 0.1 19 2.87 8378 1266 0.94 
4 0.1 39 0.85 17197 375 0.94 
5 0.1 16 1.59 7055 699 0.88 

average 0.1 22 1.4 9877 598 1.0 
RSD 

between 
scans [%] 

   42 70  

Sub_2 125.58 72.41 2.46 5 

1 0.1 25 3.49 9954 1388 1.00 
2 0.1 28 2.08 11148 828 0.88 
3 0.1 24 3.10 9556 1235 0.69 
4 0.1 19 0.36 7565 141 1.00 
5 0.1 36 5.52 14333 2200 1.06 

average 0.1 26 2.9 10511 1158 0.9 
RSD 

between 
scans [%] 

   24 65  

Sub_3 117.74 72.79 2.55 5 

1 0.1 19 8.62 8069 3660 0.88 
2 0.1 23 1.60 9767 678 0.94 
3 0.1 20 3.73 8493 1583 0.94 
4 0.1 11 0.55 4671 233 0.81 
5 0.1 12 1.33 5096 565 0.94 

average 0.1 17 3.2 7219 1344 0.9 
RSD 

between 
scans [%] 

   31 103  

Sub_4 120.8 72.33 2.36 5 

1 0.1 20 3.80 8278 1574 1.00 
2 0.1 17 2.40 7036 994 1.06 
3 0.1 27 0.94 11175 390 1.00 
4 0.1 36 5.67 14901 2347 1.00 
5 0.1 28 1.83 11589 756 0.88 

average 0.1 26 2.9 10596 1212 1.0 
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RSD 
between 
scans [%] 

   29 63  

Sub_5 118.58 72.88 2.50 5 

1 0.1 35 4.26 14758 1798 1.00 
2 0.1 26 4.27 10963 1802 0.88 
3 0.1 22 3.21 9276 1353 0.75 
4 0.1 41 2.12 17288 895 0.75 
5 0.1 24 3.78 10120 1595 0.94 

average 0.1 30 3.5 12481 1489 0.9 
RSD 

between 
scans [%] 

   27 26  

Sub_6 115.4 72.48 2.33 5 

1 0.1 45 3.91 19497 1693 0.88 
2 0.1 16 1.23 6932 531 1.00 
3 0.1 26 2.18 11265 944 1.06 
4 0.1 14 1.16 6066 502 0.88 
5 0.1 27 2.63 11698 1141 0.94 

average 0.1 26 2.2 11092 962 1.0 
RSD 

between 
scans [%] 

   48 51  

     

Average 
RSD 

between 
scans [%] 

   33 63  

     

RSD 
between 

subsamples 
[%] 

   17 28  

 

 

Table 11. Microplastic counts and mass found in each station, grouped by polymer type 

 ARH170006 ARH170016 FYNNord FYNLunkebugt4 
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Polymers 

Particle 
counts 

found in the 
scans 

[counts] 

Particle 
mass found 
in the scans 

[µg] 

Particle 
counts found 
in the scans 

[counts] 

Particle mass 
found in the 

scans [µg] 

Particle 
counts found 
in the scans 

[counts] 

Particle mass 
found in the 

scans [µg] 

Particle 
counts found 
in the scans 

[counts] 

Particle mass 
found in the scans 

[µg] 

ABS 2 0.13 1 0.03 3 0.07 1 0.07 
Acrylic 13 0.44 11 0.64 6 0.35 9 0.31 
Alkyd 7 0.73 6 0.60 8 0.61 13 2.26 

Cellulose_ester 7 0.08 12 0.66 4 0.05 10 0.09 
Epoxy_Phenoxy resin 21 0.93 8 0.30 2 0.06 13 0.26 

EVA 0 0.00 1 0.01 0 0.00 0 0.00 
PA 11 0.78 15 0.71 15 1.16 13 0.69 

Paint 21 1.82 16 1.80 18 2.91 26 7.37 
PAN_Acrylic fibre 36 4.12 48 10.59 25 3.28 59 17.25 

PE 33 1.84 62 3.70 38 6.63 29 32.37 
Poly(vinylpyrrolidone_co_vinyl 

acetate) 0 0 1 0 0 0 0 0 

Polyester 213 12.40 293 30.35 111 9.93 247 186.04 
PP 230 27.60 109 17.17 65 6.49 72 20.91 
PS 69 17.34 66 17.78 38 6.67 45 19.72 
PU 20 1.09 25 1.62 7 0.17 20 1.50 

PVC 50 11.26 32 4.39 13 0.47 12 0.99 
Vinyl chloride copolymer 0 0 1 0.10 0 0 0 0 

SUM 733 80.55 707 90.45 353 38.84 569 289.82 
 

 

Table 12. One way ANOVA test on microplastic concentration between subsamples, both by counts and mass. If p < 0.05, there is significant difference between the subsamples 

 P value of the test on microplastic number 
concentration 

[item/kg] 

P value of the test on microplastic mass concentration 
[µg/kg] 

ARH170006 0.352 0.554 
ARH170016 < 0.05 0.154 

FYNLunkebugt4 < 0.05 0.131 
FYNNord < 0.05 0.184 
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