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Purpose of the project 
The aims of the project are divided into two: 1) to assemble bycatch data for seabirds, marine 

mammals and estimate total bycatch numbers in the Danish gillnet fishery, and 2) to assemble data 

on population size and bycatch of non-commercially exploited fish.  

Bycatch of seabirds and marine mammals 
Bycatch of air-breathing animals in commercial fisheries is documented in all fishing gears 

worldwide, with some gear types being more problematic for particular taxa or species (Lewison et 

al. 2014). In Danish waters, gillnets have been identified as a major source of bycatch mortality for 

seabirds and marine mammals (Vinther 1999; Vinther and Larsen 2004; Kindt-Larsen et al. 2016; 

Glemarec et al. 2020). Air-ōǊŜŀǘƘƛƴƎ ŀƴƛƳŀƭǎ ŜƴǘŜǊƛƴƎ ƛƴ ŎƻƴǘŀŎǘ ǿƛǘƘ ƴŜǘǎΩ ǘƘǊŜŀŘǎ ŦŀŎŜ ǘƘŜ Ǌƛǎƪ ƻŦ 

becoming entangled, which generally results in drowning. For some vulnerable species, the 

additional mortality due to bycatch can have a significant impact on the size of the affected 

population(s). In Denmark, opportunistic studies have shown that bycatch rates of birds or mammals 

in gillnets can locally be very high (e.g., Durinck et al., 1993; Degel et al., 2010), while other studies in 

the Baltic Sea and the North Sea have demonstrated that current bycatch levels may lead to 

population decrease in the future ό¿ȅŘŜƭƛǎ Ŝǘ ŀƭΦ нллфΤ .ŜŜǎǘ Ŝǘ ŀƭΦ нлмтΤ aŀǊŎƘƻǿǎƪƛ Ŝǘ ŀƭΦ нлнлύ. 

Under the Data Collection Framework (DCF), on-board observers collect bycatch data routinely in 

Danish waters, but the sampling effort in the gillnet fleet is limited. Moreover, commercial gillnetters 

often do not register bycatch events and report their fishing effort at a rough spatiotemporal scale. 

As a result, the knowledge on the magnitude and distribution of bycatch of vulnerable species has 

remained scarce in many areas in Denmark until recently. To fill in these gaps, DTU Aqua started a 

dedicated bycatch data collection programme in 2010, using Electronic Monitoring systems (EM) 

with videos. These autonomous systems, installed on volunteering fishing vessels, record the 

position and speed of the vessel, while capturing video footage of the activities on deck and on the 

side of the vessel where hauling takes place (Figure 1). These EM data allow monitoring of the entire 



fishing activity of a vessel at a fine spatiotemporal scale for extended periods of time, and thereby 

capture the occurrence of rare bycatch events. 

 

Figure 1: Footage from the Danish video-based electronic monitoring programme. Up: inside camera 
showing the bycatch of a seabird (here, a female common eider Somateria mollissima); Down: 
outside camera showing the bycatch of a harbour porpoise. 

 



Methods 

Data sources 

Bycatch data 

In this report, data on bycatch of marine mammals and seabirds in gillnet fisheries were collected 

using EM on board 17 Danish commercial gillnetters between 2010 and 2019 (Figure 2) in ICES areas 

IVb (North Sea), IIIan (Skagerrak), IIIas (Kattegat), IIIb23 (the Sound; Øresund in Danish), IIIc22 (Belt 

Sea); no data were collected in areas IIId24 and IIId25 (Baltic ProperFejl! Henvisningskilde ikke 

fundet.). 

 

Figure 2: Distribution of the sampling effort (haul positions in red) of the gillnet vessels participating 
to the EM bycatch data collection programme. Data from 2010-2019. Common name of ICES 
statistical areas (orange) and separation between ICES statistical areas (black lines) are indicated.  

During this period, 5439 vessel-fishing days were recorded and analysed for bycatch, representing an 

average sampling effort of >2% of the total yearly commercial gillnet fleet effort (Table 1). EM data 

were also collected for the year 2020, but the Covid-19 crisis slowed down the analysis process 

considerably. These data were not entirely analysed at the time of writing this report and are 

therefore not included in the forthcoming analysis. 



Table 1: Number of sampled fishing days from 2010-2019 per quarter in the EM bycatch data 
collection programme. Data from neighbouring ICES areas were grouped together to ensure vessel 
anonymity, in accordance with EU GDPR rules. 

 Q1 Q2 Q3 Q4 Total 

North Sea 
Skagerrak 

240 288 316 318 1162 

Kattegat 
Øresund  
Belt Sea 

1023 1319 1020 915 4277 

      

All areas 1263 1607 1336 1233 5439 
 

Two different EM systems were used to monitor the fishing activity and potential bycatch: EM 

Observe (Archipelago Marine Research Ltd, Canada; http://www.archipelago.ca), replaced with 

Black Box Video (Anchorlab, Denmark; http://www.anchorlab.dk/) from 2013 and onward. Both EM 

systems were similar in terms of hardware, consisting of a central processing unit installed in the 

wheelhouse, integrating data from a position sensor (GPS) and a set of waterproof CCTV (Closed-

Circuit TeleVision) cameras recording the activity on deck. Each hardware system was associated 

with its own specialised EM data analysing software (EM Interpret for Archipelago, and BlackBox 

Analyzer for Anchorlab - Figure 3), which could both display the recordings alongside information on 

position and speed of the sampled vessel. 

 

Figure 3: BlackBox Analyzer software, showing the instantaneous vessel speed on a timeline (up), and 
the map with the position of the vessel and the corresponding video footage from three onboard 
cameras (down). The details allowing the identification of the vessel were removed. 

Data analysts were trained to identify fishing activity (net deployment and retrieval), as well as the 

bycatch of the species of interest (seabirds, harbour porpoise, and seals). Videos were watched at no 

more than 3 to 5 times the normal speed, with the possibility to play the sequences frame by frame 

and rewind. In most cases, angles from multiple cameras and playback functions helped clarifying 

http://www.archipelago.ca/
http://www.archipelago.ca/
http://www.anchorlab.dk/
http://www.anchorlab.dk/


difficult bycatch items. Nevertheless, weather conditions, luminosity, potential sun flares, or the 

general cleanliness of the camera lenses could affect image readability; fishers could also sometimes 

place themselves in the visual field in a way that made the identification process difficult. Generally, 

degraded image quality could make bycatch identification challenging, yet in most cases the animals 

observed as bycatch were identified down to species level. 

The identification of bycaught animals from the video recordings was generally possible down to 

species level (95.8%), but some animals could only be identified at genus (0.7%), family (1.1%), or 

class level (2.4%). There were specific challenges with seal identification as juvenile grey seals can be 

difficult to distinguish from adult harbour seals in the collected video footage. As a result, seals were 

identified down to species in only 90.5% of the cases. For categories with rare occurrences in the 

dataset, grouping was sometimes necessary to allow for statistical analyses. Three main groups were 

focused on: seals (combining grey seal (Halichoerus grypus) and harbour seal (Phoca vitulina)), 

harbour porpoise (Phocoena phocoena), and seabirds (categorised as species or group of species, 

e.g., genus or family). Additionally, some species of seabirds that express sexual or age dimorphism 

were categorised accordingly, namely the common eider (males and females) and the great 

cormorant (juveniles and adults). Table 2 shows the number of animals of each species (or group of 

species) recorded with EM during the study period. 

Table 2: Number of bycatches of protected species observed per quarter from 2010-2019 in the EM 
bycatch data collection programme. Data from neighbouring ICES areas were grouped together to 
ensure vessel anonymity, in accordance with EU GDPR rules. 

 
 Kattegat 

Øresund 
Belt Sea 

 
North Sea 
Skagerrak 

  Q1 Q2 Q3 Q4  Q1 Q2 Q3 Q4 

Birds (all species)  677 91 132 404  26 1 24 55 

Common eider (female + male)  232 64 41 239  0 0 1 0 

Common eider (female)  43 12 15 55  0 0 0 0 

Common eider (male)  177 42 17 177  0 0 1 0 

Great cormorant (juvenile + adult)  33 5 75 61  0 0 5 2 

Great cormorant (juvenile)  21 2 44 41  0 0 2 1 

Great cormorant (adult)  8 0 18 14  0 0 3 0 

Alcidae (all species)  377 14 8 71  20 0 8 48 

Gavidae (all species)  3 1 0 4  0 0 0 0 

Northern fulmar  0 0 0 0  0 0 3 1 

Laridae (all species)  1 1 1 2  1 0 1 0 

Scoter (all species)  19 3 3 21  0 0 0 2 

Grebe (all species)  4 0 2 2  0 0 0 0 

Other bird species  8 3 2 4  5 1 5 2 

Harbour porpoise  35 8 8 33  6 1 10 5 

Harbour seal + grey seal  38 97 62 35  13 40 92 22 

 

Fishing effort data 

Fishing effort data of the vessels which had registered gillnets as their primary or secondary gear for 

the period 2010-2019 were collated from fisher-reported logbooks for the vessels above 10 metres 

in overall length (or above 8 metres in the Baltic Sea if the main target species of the vessel is cod 



(Gadus morhua)), monthly declarations (mandatory for vessels between 8 and 10 metres in place of 

logbooks), and sales notes. In Denmark, these data are reported at the spatial scale of ICES statistical 

rectangle, a square of 30x30nm and rarely, if ever, mention bycatch of protected species. It can be 

noted that the overall effort of the Danish gillnet fishing fleet (measured as the total number of 

fishing days per year) decreased significantly since 2010 by approx. 25%, with local variation 

between fishing areas. Figure 4 shows the distribution and intensity of the gillnet effort around 

Denmark during the study period and illustrates the reduction in overall gillnet effort between the 

first and the second half of the study period. 



 

Figure 4: Distribution of the fishing effort (in sum of fishing days per ICES statistical rectangle) of the 
Danish commercial gillnet fleet for the periods 2010-2014 and 2015-2019. Delimitations between 
ICES areas are marked as plain grey lines. 



Bycatch probability maps 

Bycatch model development 

Preliminary investigations of the EM dataset showed that species-specific bycatch rates (measured 

as the number of individuals of a species captured by net length times soak time) were not linearly 

proportional to the intensity of the fishing effort, but instead varied in time and space. Kindt-Larsen 

et al. (2016) studied such a relationship between net fisheries and harbour porpoise bycatch in the 

Skagerrak, by fitting a statistical model using a combination of EM and population density data as 

input. Roughly speaking, this approach consisted of estimating the local probability that a bycatch 

event occurs given the estimated local porpoise density and the intensity of the fishing effort, while 

considering the characteristics of the fishery (e.g., average soak time, net length, mesh size, fishing 

area, season, etc.). In the present report, unlike what was done in Kindt-Larsen et al. (2016), data on 

species densities were incomplete or too coarse for the entire study area, so we developed an 

alternative model template to explain the observed variations of bycatch rates for each individual 

species (or group of species species) in the EM dataset based on a combination of operational and 

ecological parameters. 

Concretely, we built a dataset associating bycatch data (number of individuals captured per haul) 

and information on mesh size, net length, soak time, position of the fishing gear (including ICES area 

in which fishing was registered, depth at immersion and distance to shore), and temporal dummy 

variables (year and quarter). This dataset was created from combining the analysed EM data and 

additional data from official logbooks and sales notes from 2010 to 2019. Our aim was to construct 

simple and informative maps showing the areas of high-risk of bycatch around Denmark, associated 

with the uncertainty in the bycatch rate estimates. To achieve this, we created statistical models, 

assuming that the response variable (the number of bycaught individuals of a species per haul) was 

related to a combination of fishing effort (measured by soaking duration and total length of the net 

fleet), and mesh size (which can be used as a proxy for the targeted fish species), while accounting 

for seasonality and fishing location. Since we knew the position of each haul in the EM dataset, we 

included additional variables as depth of fishing and distance between the net fleet and the closest 

point on shore. Moreover, preliminary analyses of the data collected with EM had showed clear 

signs of spatial autocorrelation, i.e., bycatch events were often clustered in space. To account for 

this, we also included a spatial autocorrelation parameter to the models using a stationary spatial 

field with an exponentially decreasing correlation between spatial points. 

We wanted to feed a generalised linear model (GLM) with the observed bycatches and fitted a 

model for each species (or group of species) for each quarter and for the entire year. The response 

was a count (number of individuals bycaught per haul), so Poisson and negative binomial 

distributions were initially considered (both using a log link). However, the data were clearly 

overdispersed with a majority of zeros in the dataset for all species (or group of species). Unlike the 

Poisson distribution, the negative binomial distribution does not assume equality between mean and 

variance, allowing more flexibility for the model, often making it a better choice in bycatch 

estimation studies with lots of zeros (Bærum et al. 2017; Bertram et al. 2021). Therefore, a negative 

binomial distribution (with a log link) was preferred for this study. Practically, for each species (or 

group of species), we fitted a full model including all the potential variables of interest in the dataset 

(Table 3). Then, for each species (or group of species), we also fitted all simpler models containing a 

subset of ǘƘŜ Ŧǳƭƭ ƳƻŘŜƭΩǎ variables and compared all these models using AIC. We selected the best 

model as the one with the lowest AIC score (Vaida and Blanchard 2005). We built models for 

harbour porpoise, seals (combining data on harbour and grey seals), and for each species (or group 

of species) of seabirds for which enough bycatch data were available, i.e., for the common eider 



(female, male, and total), the great cormorant (juvenile, adult, and total), alcids (combining data on 

common guillemot and razorbill), and scoters (combining data on velvet and common scoters). For 

other bird species, including loons (common and black-throated loon), northern fulmar, seagulls 

(greater black-backed and herring seagull), grebes (red-necked and great crested grebe), and other 

unidentified seabirds, occurrences of bycatch were rare, and the single-species models generally 

ŦŀƛƭŜŘ ǘƻ ŎƻƴǾŜǊƎŜΣ ǎƻ ǘƘŜǎŜ ǎǇŜŎƛŜǎ ǿŜǊŜ ƎǊƻǳǇŜŘ ǘƻƎŜǘƘŜǊ ƛƴ ǘƘŜ ŎŀǘŜƎƻǊȅ άƻǘƘŜǊ ōƛǊŘǎέΦ 

Table 3: List of the variables included in the bycatch models. All the models included a spatial 
autocorrelation component.  

Variables Description 

Number of bycatches 
per haul 

Number of individuals of a species (or group of species) taken as bycatch 
per haul 

log(soak) Soaking duration of the haul (continuous variable in log(hours)) 

net length Total length of a haul (continuous variable in metre) 

mesh Size of the stretched mesh in the haul (categorical variable with 3 levels: 
<120mm, 120-200mm, and >200mm) 

d2shore Distance between the haul and the closest point on shore (continuous 
variable metre) 

depth Maximal depth of the haul (continuous variable metre) 

quarter Categorical variable with 4 levels 

year Categorical variable with 10 levels 

X(lon;lat) Spatial correlation variable (decreasing exponentially as a function of the 
Euclidian distance between spatial points) 

 

The data management and model fitting were dealt with in the R language, using notably the 

glmmTMB package to fit GLMs with a spatial component (Brooks et al. 2017; R Core Team 2021). All 

ǊŜǎǳƭǘƛƴƎ άǿƛƴƴƛƴƎέ ƳƻŘŜƭǎ ǿŜǊŜ ŀǎǎŜǎǎŜŘ ŦƻǊ ƎƻƻŘƴŜǎǎ-of-fit by a simulation-based approach, 

similar to a Bayesian p-value or a parametric bootstrap, using the DHARMa package (Hartig 2021). 

Model predictions and mapping 

The selected models were used to estimate the local bycatch risk for each species (or group of 

species) using the function predict in R, returning the predicted values and the associated 

uncertainty (as standard error). The relative risk of bycatch (no unit) and the uncertainty of the 

bycatch risk estimates were mapped for the selection of species (or group of species). For each 

location in the dataset, the uncertainty was estimated using a modified coefficient of variation (CV), 

such as the modified CV was the standard error of the prediction divided by the predicted value. This 

statistic can be interpreted as the confidence one can have in the estimate at a given location. It is 

usually admitted that a CV of 0.3 or less represents a high confidence in the prediction, while above 

0.5, the predictions should be taken with a grain of salt. Generally, areas with low confidence (high 

CV) correspond to those areas where sampling effort was low. 

To allow for an easier interpretation of the results, the data points (predictions and uncertainties) on 

the maps were interpolated. Simply put, this means that we used the information from a limited 

number of locations (the sampling locations) and applied a mathematical model to provide an 

educated guess of what the results might look like, if we would have sampled at every possible 

location. In the bycatch probability maps, we assumed that the points closer in space were more 

related to one another, and fitted an Inverse Distance Weighting function (IDW) using the R package 

gstat (Pebesma 2004; Gräler, Pebesma, and Heuvelink 2016). For the uncertainty maps, we used the 



Thin Plate Splines (TPS) regression interpolation method from the fields package (Nychka et al. 

2021), allowing to map the uncertainty over the entire study area. 

Bycatch estimates 
Estimating total bycatch of a species at fleet level can be done in a number of ways depending on 

the bycatch rate and the effort data at-hand (Moore et al. 2021). For instance, Vinther (1999) 

estimated the total bycatch of harbour porpoises in gillnets using fisheries observers and landings 

data. While we had access to fine-scale fisheries-dependent data from the EM programme, we could 

not directly extrapolate bycatch rates at haul level to the entire fleet, as this information is not 

systematically reported in Denmark for vessels below 12 metres in overall length, which constitute 

the majority of Danish commercial gillnetters. Therefore, we estimated mean bycatch rates per 

fishing day for each species (or group of species) and scaled up these estimates from the official 

logbook and sales notes data from Danish fishers. In summary, the bycatch data collected using EM 

were combined with fisher-reported data (logbooks and sales notes) to calculate the total bycatch 

estimate in the Danish setnet fishery for each species (or group of species) per quarter. Fleet-level 

bycatch mortality was estimated individually for each target group vulnerable to bycatch in gillnets 

(different species of seabirds, harbour porpoise, and seals). First, using fine-scale EM data from 

Danish commercial gillnet vessels between 2010 and 2019, mean bycatch rates (bycatch per unit 

effort or BPUE) were estimated as the number of individuals of each taxon captured per fishing day 

per quarter per region. Then, data were collated from official fishing logbooks and sales notes for all 

the vessels which had registered gillnets as their primary or secondary gear for the period 2010-2019 

(Figure 4), and mean fishing effort estimates were calculated as the mean total number of fishing 

days per quarter per region (Table 4). A fishing day was defined as a calendar day during which at 

least one hauling operation had been registered. Confidence intervals around the mean estimator 

were obtained using a bootstrapping technique (100 000 repetitions). Finally, the stratified BPUE 

estimates for each target group and the associated confidence intervals were multiplied with the 

stratified fishing effort estimates to obtain the corresponding bycatch estimates per quarter per 

region. Likewise, yearly species-specific bycatch estimates per region were obtained using a similar 

approach, but they had to be averaged out over the entire study period to ensure vessel anonymity, 

following the obligations of the European Union General Data Protection Regulation (EU) 2016/679 

(GDPR). 

Table 4: Number of fishing days per quarter in the Danish commercial gillnet fleet. Data from 2010-
2019 compiled by DTU Aqua from official logbooks, sales notes, and monthly declarations. 

 Q1 Q2 Q3 Q4 Total 

North Sea 1497 2483 1432 854 6266 

Skagerrak 1306 2213 1368 1369 6256 

Kattegat 
(incl. Isefjord) 

1211 1616 1088 350 4264 

Belt Sea 2327 2809 2122 1931 9189 

Øresund 726 730 975 1220 3650 

      

All areas 7361 10416 7282 6047 31106 

 



Results 

Bycatch models 
Table 5 presents the model structure of all the models used to build the bycatch risk maps. For some 

species (or group of species) of seabirds with rare occurrences (i.e., with less than 10 occurrences of 

each species recorded over the course of the monitoring programme), we were not able to build 

models that would converge, so these were grouped in the category άhǘƘŜǊ .ƛǊŘǎέ. 

Table 5: Model structure of the models used to build the bycatch risk maps (y = Year; Q = Quarter; 
log(st) = soak time; nl = net length; m = mesh size; d = depth; d2s = distance to shore; X(lon;lat) = 
spatial correlation variable). 

Response variable Fixed effects structure 

Porpoise per haul ~ y + Q + log(st) + nl + m + d + d2s + X(lon;lat) 

Seals per haul ~ Q + log(st) + nl + m + X(lon;lat) 

Seabirds per haul (all species) ~ y + Q + log(st) + nl + d + X(lon;lat) 

Common eider per haul ~ y + Q + log(st) + d + X(lon;lat) 

Common eider per haul (female) ~ Q + log(st) + d + X(lon;lat) 

Common eider per haul (male) ~ Q + log(st) + m + d + d2s + X(lon;lat) 

Great cormorant per haul ~ y + Q + m + d + d2s + X(lon;lat) 

Great cormorant per haul (juvenile) ~ Q + X(lon;lat) 

Great cormorant per haul (adult) ~ Q + X(lon;lat) 

Alcids per haul (common guillemot and razorbill) ~ y + Q + nl + m + d + d2s + X(lon;lat) 

Scoters per haul (common and velvet scoters) ~ Q + log(st) + m + d + d2s + X(lon;lat) 

Other seabird species per haul ~ y + Q + log(st) + nl + m + d + d2s + X(lon;lat) 
 

Bycatch probability maps 
The maps (Figure 5-Figure 28) presented in this section illustrate the predictions from the bycatch 

models and show the relative (i.e., no unit) species-specific bycatch risk in the Danish commercial 

gillnet fisheries with the associated coefficient of variation. These maps could only be created for the 

species (or group of species) for which enough data were available from the bycatch monitoring 

programme using EM. Rare species of seabirds were grouped into the ŎŀǘŜƎƻǊȅ άhǘƘŜǊ .ƛǊŘǎέ and a 

model was created specifically for this subset of the dataset. 

  



Harbour porpoise 

 

Figure 5: Quarterly bycatch risk (no unit) for harbour porpoise in the Danish commercial gillnet fleet, 
from model predictions using electronic monitoring data (2010-2019). Regions in light grey 
correspond to areas where sampling effort was too low to assess bycatch risk (see Figure 2  for 
comparison). 
















































