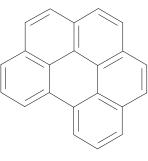

Miljøstyrelsen


September 2013-08-06 hcl/Kemikalier Opdatering af datablad fra 27. januar 2009 malfs/Kemikalier

Inden(1,2,3-cd)pyren (CAS nr. 193-39-5) Benz(g,h,i)perylen (CAS nr. 191-24-2)

Strukturformler:

CAS nr. 193-39-5

CAS nr. 191-24-2

VKK_{ferskvand} Dækket af værdien for benz(a)pyren (0,0082 µg/l*)

VKK_{saltvand} Dækket af værdien for benz(a)pyren ($0,00082 \mu g/l^*$)

KVKKferskvand 0,0082 µg/l**

KVKKsaltvand 0,00082 µg/l**

SKKferskvand 420 µg/kg tørvægt

SKKsaltvand 42 µg/kg tørvægt

BKK Dækket af værdien for benz(a)pyren

*: Hvis man har måling af disse stoffer kan disse værdier bruges. EU direktivet henviser til kvalitetskravet for benz(a)pyren. Hvis koncentrationen af B(a)P ikke overstiger kvalitetskravet regner man med at koncentrationen af disse to stoffer heller ikke overstiger miljøskadelige niveauer.

**I direktivet bruges denne værdi kun for benz(g,h,i)perylen mens der står, at KVKK ikke anvendes for Inden(1,2,3-cd)pyren.

English Summary

For benzo(ghi)perylene and indeno(123-cd)pyrene the environmental quality standards (EQS) in Directive 2008/105/EC for the water column were 0,002 μ g/l for both fresh- and saltwater, and the values covered both substances. However, in the risk assessment report (RAR) on pitch coal tar, high temperature the two substances were not "pooled", and the values for saltwater were ten times lower than the values for freshwater. Thus the values for I(1,2,3-cd)P were 0,0027 μ g/l and 0,00027 μ g/l for fresh- and saltwater respectively, while for B(ghi)P the values were 0,0082 μ g/l and 0,00082 μ g/l. The values for I(1,2,3-cd)P were set with high assessment factors (100 and 1000) because of few data. In the new directive the two substances are covered by the value for benzo(a)pyrene.

As QSAR (ECOSAR) predictions give identical results concerning the toxicity of the two substances to organisms living in water, it seems reasonable to set common quality standards for these two substances.

In the fact-sheet on the 5-6 rings PolyAromatic Hydrocarbons (PAH) from 14^{th} of January 2011 (attached as annex (Bilag)) it is suggested to set the MAC equal to the EQS. In the new directive the MAC for B(ghi)P is 0,0082 µg/l and 0,00082 µg/l for fresh- and saltwater, respectively, whilst the MAC for I(1,2,3-cd)P is classified as "not applicable".

Sediment quality standards (EQS_{sediment}) were derived by using the equilibrium partitioning method.

In the new directive the biota standard for protection of human health is covered by the value for benzo(a)pyrene.

The derived quality standards are:

EQS _{freshwater}	Covered by the value for benzo(a)pyrene(0,0082 μ g/l*)		
EQS saltwater	Covered by the value for benzo(a)pyrene (0,00082 μ g/l*)		
MACfreshwater	0,0082 µg/l**		
MACsaltwater	0,00082 μg/l**		
EQS sediment, freshwater	420 µg/kg dw		
EQS _{sediment} , saltwater	42 μg/kg dw		
EQS _{biota}	Covered by the value for benzo(a)pyrene		

*If measurements of these two substances are available it may be possible to use these values. If not, then it is assumed that if the concentration of B(a)P does not exceed the EQS of B(a)P then the concentrations of I(1,2,3-cd)P and B(ghi)P will also not exceed harmful levels

**In the directive these values are for B(ghi)P only.

I EU's risikovurdering af tjærestofferne (CAS nr. 65996-93-2, EU-RAR, 2009) har man for CAS nr. 193-39-5 beregnet PNEC værdier på 0,0027 μ g/l og 0,00027 μ g/l for henholdsvis ferskvand og saltvand og for CAS nr. 191-24-2 tilsvarende beregnet henholdsvis 0,0082 μ g/l og 0,00082 μ g/l. Der er ikke lavet beregninger for fødekædeeffekter i hverken EU direktivet eller i EU's risikovurderingsrapport.

I det nye direktiv om kvalitetskrav (datterdirektiv til VRD) er de to stoffer ikke længere slået sammen, og der er ikke fastsat selvstændige vandkvalitetskriterier (VKK) for de to stoffer, men de dækkes af VKK for benz(a)pyren. For benz(ghi)perylen er der fastsat et KVKK, der er lig med PNEC fastsat i RAR. Der er ligeledes ikke fastsat et biotakvalitetskrav (BKK) i udkastet til nyt direktiv, idet det dækkes af BKK for benz(a)pyren.

EU-databladet til vandrammedirektivet fra januar 2011 (vedhæftet som bilag) slår heller ikke de to stoffer sammen, og konkluderer, at der er for få data for inden(1,2,3-cd)pyren til at fastsætte kvalitetskriterier, mens det følger RARen med hensyn til benz(ghi)perylen.

Begge stoffer består af 6 ringe og er relativt kompakte i strukturen og QSAR (ECOSAR) forudsigelser forudsiger samme giftighed for organismer, der lever i vand af de to stoffer. Det synes derfor rimeligt at lave fælles kvalitetskriterier for de to stoffer, som gælder for summen af dem. RARens PNEC for inden(1,2,3-cd)pyren er fastsat med en høj usikkerhedsfaktor (100 og 1000) på laveste EC₁₀.

Der er meget lille forskel på koncentrationerne for stoffernes akutte og kroniske giftighed, da de har høj akut giftighed i forbindelse med UV belysning (fototoksicitet). Derfor anvendes vandkvalitetskriteriet (VKK) som et konservativt fastsat KVKK, som det er gjort i det nye direktiv og i EU-databladet (for benz(ghi)perylen).

Sedimentkvalitetskriterier (SKK)

Der er ingen data for effekter på sedimentlevende organismer, og derfor bruges ligevægtsfordelingsmetoden (EqP).

Ifølge EU-vejledningen beregnes SKKvådvægt som følger:

 $SKK_{vådvægt} = K_{susp} * VKK * 1000/RHO_{sed}$. Faktoren 1000 er for omregning fra m³ til liter.

Ifølge RAR er RHO_{sed} = 1150 kg/m3 og K_{susp} = 25583 og 58607 for henholdsvis benz(ghi)perylen og inden(1,2,3-cd)pyren. Det vælges her at anvende K_{susp} = 25583, da det vil være en mere forsigtig tilgang.

SKK_{vådvægt, ferskvand} = 25583*0.0082 μ g/l*1000/1150 kg/m³ = 182,4 μ g/kg vådvægt

SKK_{tørvægt} = SKK_{vådvægt} *konverteringsfaktor

Konverteringsfaktor = RHO_{sed}/ F_{solid} *RHO_{solid}, hvor F_{solid} og RHO_{solid} er henholdsvis 0,2 og 2500 kg/m³ (standardværdier fra EU vejledningen).

Konverteringsfaktor = 2,3

SKK_{tørvægt, ferskvand} = $182*2,3 = 420 \ \mu g/kg tørvægt$ SKK_{tørvægt, saltvand} = $420 \ \mu g/kg tørvægt: 10 = 42 \ \mu g/kg tørvægt$

Biotakvalitetskriterier (BKK)

I udkastet til nyt direktiv er de to stoffer dækket af BKK for benz(a)pyren

Kvalitetskriterierne bliver således:

VKK_{ferskvand} Dækket af værdien for benz(a)pyren. EU RAR: 0,0082 µg/l.

VKKsaltvand Dækket af værdien for benz(a)pyren. EU RAR: 0,00082 µg/l.

KVKK_{ferskvand} **0,0082 μg/l**. EU RAR og nye direktiv 0,0082 μg/l for B(ghi)P men ingen værdi for I(1,2,3-cd)P

KVKK_{saltvand} **0,00082 μg/l**. RAR og nyt direktiv 0.00082 μg/l for B(ghi)P. men ingen værdi for I(1,2,3-cd)P

SKK_{ferskvand} 420 µg/kg tørvægt

SKKsaltvand 42 µg/kg tørvægt

BKK Dækket af værdien for benz(a)pyren.

Referencer

Direktiv 2008/105/EF. Europa-Parlamentets og Rådets direktiv 2008/105/EF af 16. december 2008 om miljøkvalitetskrav inden for vandpolitiken, om ændring og senere ophævelse af Rådets direktiv 82/176/EØF, 83/513/EØF, 84/156/EØF, 84/491/EØF og 86/280/EØF og om ændring af Europa-Parlamentets og Rådets direktiv 2000/60/EF. <u>http://eur-</u>lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:348:0084:0097:DA:PDF

Udkast til nyt direktiv: DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy

EU-RAR (2009). European Union Risk Assessment Report COAL-TAR PITCH, HIGH TEMPERATURE, CAS No: 65996-93-2, EINECS No: 266-028-2. http://esis.jrc.ec.europa.eu/doc/risk_assessment/REPORT/pitchcoaltarreport323.pdf

EU vejledning: Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. Technical Guidance for Deriving Environmental Quality Standards. <u>https://circabc.europa.eu/sd/d/0cc3581b-5f65-4b6f-91c6-433a1e947838/TGD-EQS%20CIS-WFD%2027%20EC%202011.pdf</u>

BILAG

EU-datablad fra 14. januar 2011

5-6 rings PolyAromatic Hydrocarbons (PAH)

In the currently available EQS fact sheet addressing 5-6 rings PAH, 3 EQS values are reported for the following compounds:

- Benzo[a]pyrene
- Sum of Benzo[b]fluoranthene and Benzo[k]fluoranthene
- Sum of Benzo[g,h,i]perylene and Indeno[1,2,3-cd]pyrene

These EQS are based on direct toxicity to pelagic organisms only because no data were available for protection of top predators from secondary poisoning or for protection of human health from consumption of fishery product (except for benzo[a]pyrene where a QS_{biota, hh} is mentioned but not taken into account when deriving the overall QS).

Since this fact sheet was published in 2006, a final draft European Union Risk Assessment Report was made available in the context of assessment of existing chemicals (Regulation 793/93/EEC), addressing Coal Tar Pitch High Temperature (Final EU-RAR CTPHT, E.C., 2008a). By addressing CTPHT, this report provides useful information on the 5 substances addressed in the present fact sheet which are benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene and indeno[1,2,3-cd]pyrene. Moreover, an unpublished report from RIVM (Verbruggen, in prep.) was provided by the Netherlands to allow a dataset as complete as possible.

Based on these new documents, an attempt was made to review the EQS for the 5 substances. While data are still missing to derive QS_{biota, sec pois}, a tentative QS_{biota, hh} is proposed in the present document for the sum of 4 PAHs which are considered carcinogenic (Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene and Indeno[1,2,3-cd]pyrene), on the basis of an EU maximum level in foodstuffs in fish, crustaceans and molluscs. The corresponding EQS proposed for the sum of these 4 PAHs is based on this QS_{biota, hh} value and is recommended for comparison with concentrations in biota, rather than in water.

A QS_{biota, hh} value is also proposed for the non carcinogenic benzo[g,h,i]perylene. However, the overall QS for benzo[g,h,i]perylene is not driven by this value but by AA-QS_{water, eco} value.

Following such changes, several issues remain open:

- It may be questioned whether carcinogenic substances should be pooled together to be compared to the sum of concentrations of these substances in the media while a separate EQS is proposed for non-carcinogenic substances.
- For the 4 carcinogenic PAHs, it may be questioned whether the proposed EQS should be expressed exclusively in biota or also in corresponding value in water.
- For the non-carcinogenic PAH, it may be questioned whether the proposed EQS should be expressed in water or also in biota or sediment given the high hydrophobicity potential of the substance. Finally, it may be questioned whether the proposed EQS should be expressed in total water and/or suspended particulate matter, rather than in dissolved phase of the water compartment.

1 CHEMICAL IDENTITY

Common name	Benzo[a]pyrene
Chemical name (IUPAC)	Benzo[def]chrysene
Synonym(s)	B[a]P Benzo[def]chrysene
Chemical class (when available/relevant)	Polyaromatic hydrocarbons (PAH)
CAS number	50-32-8
EC number	200-028-5
Molecular formula	C ₂₀ H ₁₂
Molecular structure	
Molecular weight (g.mol ⁻¹)	252.3

Common name	Benzo[b]fluoranthene		
Chemical name (IUPAC)	Benzo[e]acephenanthrylene		
Synonym(s)	-		
Chemical class (when available/relevant)	Polyaromatic hydrocarbons (PAH)		
CAS number	205-99-2		
EC number (EINECS)	205-911-9		
Molecular formula	C ₂₀ H ₁₂		
Molecular structure			
Molecular weight (g.mol ⁻¹)	252.3		

Common name	Benzo[k]fluoranthene
Chemical name (IUPAC)	Benzo[k]fluoranthene
Synonym(s)	-
Chemical class (when available/relevant)	Polyaromatic hydrocarbons (PAH)
CAS number	207-08-9
EC number (EINECS)	205-916-6
Molecular formula	C ₂₀ H ₁₂
Molecular structure	
Molecular weight (g.mol ⁻¹)	252.3

Common name	Benzo[g,h,i]perylene
Chemical name (IUPAC)	Benzo[g,h,i]perylene
Synonym(s)	-
Chemical class (when available/relevant)	Polyaromatic hydrocarbons (PAH)
CAS number	191-24-2
EC number (EINECS)	205-883-8
Molecular formula	C ₂₂ H ₁₂
Molecular structure	
Molecular weight (g.mol ⁻¹)	276.3

Common name	Indeno[1,2,3-cd]pyrene		
Chemical name (IUPAC)	Indeno[1,2,3-cd]pyrene		
Synonym(s)	-		
Chemical class (when available/relevant)	Polyaromatic hydrocarbons (PAH)		
CAS number	193-39-5		
EC number (EINECS)	205-893-2		
Molecular formula	C ₂₂ H ₁₂		
Molecular structure			
Molecular weight (g.mol ⁻¹)	276.3		

2 EXISTING EVALUATIONS AND REGULATORY INFORMATION

Legislation		
Annex III EQS Dir. (2008/105/EC)	No (existing priority substance including in Annex I EQS Dir.)	
Existing Substances Reg.	CTPHT were investigated, addressing for the purpose of	
(793/93/EC)	assessment the PAHs studied in the present fact sheet.	
Pesticides(91/414/EEC)	No	
Biocides (98/8/EC)	None of the 5 substances	
PBT substances	None of the 5 substances investigated by EU-PBT Working Group separately. CTPHT were investigated as a whole and it was concluded that CTPHT is considered to be a PBT and a vPvB substance.	
Substances of Very High Concern (1907/2006/EC)	CTPHT are included ¹ because they are classified "Carc., PBT and vPvB" (articles 57a, 57d and 57e) Date of inclusion: 13.01.2010 Decision number ED/68/2009	
POPs (Stockholm convention)	No	
Other relevant chemical regulation (veterinary products, medicament,)	No	

¹ <u>http://echa.europa.eu/doc/candidate_list/svhc_supdoc_pitch_publication.pdf</u>

Endocrine disrupter (ED)		
E.C., 2004 ²	- Benzo[a]pyrene: Cat. 1 (evidence on ED)	
Groshart and Okkerman, 2000	- Investigated, not categorised	
Petersen <i>et al.</i> , 2007	 Benzo[a]pyrene: * Human health: Cat. 1 (evidence on ED) Wildlife: Cat. 2 (potential for ED) 	

² Commission staff working document on implementation of the Community Strategy for Endocrine Disrupters.

3 PROPOSED QUALITY STANDARDS (QS)

3.1 ENVIRONMENTAL QUALITY STANDARD (EQS)

3.1.1 Sum of Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene and Indeno[1,2,3-cd]pyrene

Some MAC values are proposed in the following table, however, due to the high hydrophobicity of 5-6 rings PAHs, acute toxic effects are not expected to occur.

	Value	Comments
Benzo[a]pyrene		
Proposed MAC-EQS for [freshwater] [µg.l ⁻¹] Proposed MAC-EQS for [marine water] [µg.l ⁻¹]	0.27 0.027	See section 7.1
Benzo[b]fluoranthene and Benzo[k]fluoranthene		
Proposed MAC-EQS for [freshwater] [µg.l ⁻¹] Proposed MAC-EQS for [marine water] [µg.l ⁻¹]	0.017 0.017	See section 7.1
Indeno[1,2,3-cd]pyrene		
Proposed MAC-EQS for [freshwater] [µg.l ⁻¹] Proposed MAC-EQS for [marine water] [µg.l ⁻¹]	No sufficient data available	See section 7.1

As regards chronic effects, QS_{biota_hh} for protection of human health from consumption of fishery products is deemed the "critical QS" for derivation of an Environmental Quality Standard as a first approach for the sum of the four carcinogenic PAHs, *i.e.* benzo[a]p, benzo[b]f, benzo[k]f and indeno[1,2,3-cd]p (carcinogenic PAHs). It has to be noticed however that no QS could be derived for the protection of top predators from secondary poisoning and that QS_{biota_hh} is calculated on the basis of maximum levels in foodstuffs (Regulation 1881/2006/EC) (see section 7). The proposed value is as follows:

Sum of Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene and Indeno[1,2,3- _cd]pyrene	Value	Comments
Proposed AA-EQS for [biota] [µg.kg ⁻¹ biota ww]		Critical QS is QS _{biota, hh} See section 7

The proposed values correspond to concentrations in biota and are recommended for comparison with concentrations in fish or molluscs. Member States may opt to apply EQS for water instead of those recommended above. In this case, they shall convert the values recommended above in biota to their corresponding values in water by dividing them by BCF and BMF values recommended in section 5.3 of the present fact sheet.

3.1.2 Benzo[g,h,i]perylene

As regards chronic effects, AA-QS_{freshwater_eco} and AA-QS_{marine water_eco} for protection of pelagic organisms are 8.2 10^{-3} and 8.2 $10^{-4} \mu g.l^{-1}$, respectively, and are deemed the "critical QS" for derivation of an Environmental Quality Standard as a first approach. The information available was sufficient to apply assessment factors of 10 and 100 to derive the AA-QS_{freshwater, eco} and AA-QS_{marine water, eco}, respectively and these values are deemed reliable.

It has to be noticed however that no QS could be derived for the protection of top predators from secondary poisoning,

As regards acute effects, the information available was sufficient to apply assessment factors of 100 and 1000, but MAC-QS_{freshwater_eco} and MAC-QS_{marine water_eco} for protection of pelagic organisms resulted in 2 10⁻³ and 2 10⁻⁴ μ g.l⁻¹, respectively. Therefore, these QS were set equal to AA-QS_{freshwater, eco} and AA-QS_{marine water, eco}, respectively.

Benzo[g,h,i]perylene	Value	Comments
Proposed AA-EQS for [freshwater] [µg.l ⁻¹]	8.2 10 ⁻³	Critical QS is QS _{water eco}
Proposed AA-EQS in [marine waters] [µg.l ⁻¹]	8.2 10-4	See section 7
Proposed MAC-EQS for [freshwater] [µg.l ⁻¹]	8.2 10 ⁻³	See section 7.1
Proposed MAC-EQS for [marine water] [µg.l ⁻¹]	8.2 10-4	See section 7.1

3.2 SPECIFIC QUALITY STANDARD (QS)

3.2.1 Benzo[a]pyrene

Protection objective ³	Unit	Value	Comments	
Pelagic community (freshwater) – MAC-QS	[µg.1 ⁻¹]	0.27	See section 7.1	
Pelagic community (marine waters) – MAC-QS	[µg.l ⁻¹]	0.027	See section 7.1	
Pelagic community (freshwater) – AA-QS			See section 7.1	
Pelagic community (marine waters) – AA-QS	[µg.l ⁻¹]	0.022	See Section 7.1	
Benthic community (freshwater)	$[\mu g.kg^{-1}_{dw}]$	91.5	See section 7.1	
Benthic community (marine)	[µg.kg ⁻¹ dw]	91.5	See section 7.1	
Predators (secondary poisoning)	[µg.kg ⁻¹ biota ww]	No data available	See section 7.2	
reductors (secondary poisoning)	[µg.l ⁻¹]	No data available		
	[µg.kg ⁻¹ biota ww]	- 2 for fish	See section 7.3	
Human health via consumption of fishery products, valid for the sum of benzo[a]p, benzo[b]f, benzo[k]f and indeno[1,2,3-cd]p (carcinogenic PAHs)		 5 for crustaceans and cephalopods 		
		- 10 for molluscs		
	[µg.l ⁻¹]	1.7 10 ⁻⁴ (freshwater and marine waters)		
Human health via consumption of water	[µg.1 ⁻¹]	0.01		

3.2.2 Benzo[b]fluoranthene

Protection objective ³	Unit	Value	Comments	
Pelagic community (freshwater) – MAC-QS	[µg.l ⁻¹]	0.017	See section 7.1	
Pelagic community (marine waters) – MAC-QS	[µg.l ⁻¹]	0.017	See Section 7.1	
Pelagic community (freshwater) – AA-QS	[µg.1 ⁻¹]	0.017	See section 7.1	
Pelagic community (marine waters) – AA-QS	[µg.l ⁻¹]	0.017	See Section 7.1	
Benthic community (freshwater)	[µg.kg ⁻¹ dw]	70.7	See section 7.1	
Benthic community (marine)	[µg.kg ⁻¹ dw]	70.7	See section 7.1	
Predators (secondary poisoning)	$[\mu g.kg^{-1}_{biota ww}]$	No data available	See section 7.2	
	[µg.l ⁻¹]	No data available		
		- 2 for fish		
Human health via consumption of fishery products, valid	$[\mu g.kg^{-1}_{biota ww}]$	 5 for crustaceans and cephalopods 		
for the sum of benzo[a]p, benzo[b]f, benzo[k]f and indexs[1,2,2, odlp (organized price parties DAUs)		- 10 for molluscs		
indeno[1,2,3-cd]p (carcinogenic PAHs)	[µg.l ⁻¹]	1.7 10 ⁻⁴ (freshwater and marine waters)	See section 7.3	
Human health via consumption of water, <i>valid for the sum of benzo[b]f, benzo[k]f, benzo[ghi]p and indeno[1,2,3-cd]p</i>	[µg.l ⁻¹]	0.1		

3.2.3 Benzo[k]fluoranthene

Protection objective ⁴	Unit	Value	Comments

³ Please note that as recommended in the Technical Guidance for deriving EQS (E.C., 2010), "EQSs [...] are not reported for 'transitional and marine waters', but either for freshwater or marine waters". If justified by substance properties or data available, QS for the different protection objectives are given independently for transitional waters or coastal and territorial waters.

Pelagic community (freshwater) – MAC-QS	[µg.l ⁻¹]	0.017	See section 7.1	
Pelagic community (marine waters) – MAC-QS	[µg.l ⁻¹]	0.017	See Seedon /.1	
Pelagic community (freshwater) – AA-QS	[µg.1 ⁻¹]	0.017	See section 7.1	
Pelagic community (marine water) – AA-QS	[µg.l ⁻¹]	0.017	See Section 7.1	
Benthic community (freshwater)	[µg.kg ⁻¹ dw]	67.5	See section 7.1	
Benthic community (marine)	[µg.kg ⁻¹ dw]	67.5	See section 7.1	
Predators (secondary poisoning)	$[\mu g.kg^{-1}_{biota ww}]$	No data available	See section 7.2	
realize (coordina) personais)	[µg.1 ⁻¹]	No data available		
Human health via consumption of fishery products, <i>valid</i>		- 2 for fish		
	$[\mu g.kg^{-1}_{biota ww}]$	 5 for crustaceans and cephalopods 		
for the sum of benzo[a]p, benzo[b]f, benzo[k]f and indexs[1,2,2, adln (causing causis BAUs)		- 10 for molluscs		
indeno[1,2,3-cd]p (carcinogenic PAHs)	[µg.l ⁻¹]	1.7 10 ⁻⁴ (freshwater and marine waters)	See section 7.3	
Human health via consumption of water, <i>valid for the sum of benzo[b]f, benzo[k]f, benzo[ghi]p and indeno[1,2,3-cd]p</i>	[µg.l ⁻¹]	0.1		

3.2.4 Benzo[g,h,i]perylene

Protection objective ⁴	Unit	Value	Comments	
Pelagic community (freshwater) – MAC-QS	[µg.1-1]	8.2 10-3	See section 7.1	
Pelagic community (marine waters) – MAC-QS	[µg.1 ⁻¹]	8.2 10-4	See Section 7.1	
Pelagic community (freshwater) – AA-QS	[µg.1 ⁻¹]	8.2 10-3	See section 7.1	
Pelagic community (marine water) – AA-QS	[µg.1 ⁻¹]	8.2 10-4		
Benthic community (freshwater)	[µg.kg ⁻¹ dw]	42	See section 7.1	
Benthic community (marine)	[µg.kg ⁻¹ dw]	4.2	See section 7.1	
Predators (secondary poisoning)	$[\mu g.kg^{-1}_{biota ww}]$	No data available	See section 7.2	
reducers (secondary personning)	[µg.1 ⁻¹]	No data available		
	$[\mu g.kg^{-1}_{biota ww}]$	1 826		
Human health via consumption of fishery products	[µg.1 ⁻¹]	0.03	See section 7.3	
Human health via consumption of water	[µg.l ⁻¹]	0.1	1	

⁴ Please note that as recommended in the Technical Guidance for deriving EQS (E.C., 2010), "EQSs [...] are not reported for 'transitional and marine waters', but either for freshwater or marine waters". If justified by substance properties or data available, QS for the different protection objectives are given independently for transitional waters or coastal and territorial waters.

3.2.5 Indeno[1,2,3-cd]pyrene

Protection objective ⁵	Unit	Value	Comments	
Pelagic community (freshwater) – MAC-QS	[µg.1 ⁻¹]	No derivation possible	See section 7.1	
Pelagic community (marine waters) – MAC-QS	[µg.1 ⁻¹]	No aerivation possible	See Section 7.1	
Pelagic community (freshwater) – AA-QS	[µg.1 ⁻¹]	No derivation possible	See section 7.1	
Pelagic community (marine water) – AA-QS	[µg.l ⁻¹]	no activation possible	See Section 7.1	
Benthic community (freshwater)	[µg.kg ⁻¹ dw]	No derivation possible	See section 7.1	
Benthic community (marine)	[µg.kg ⁻¹ dw]	No derivation possible	See section 7.1	
Predators (secondary poisoning)	$[\mu g.kg^{-1}_{biota ww}]$	No data available	See section 7.2	
	[µg.1 ⁻¹]	No data available	500 500 min / 12	
		- 2 for fish		
Human health via consumption of fishery products, valid	$[\mu g.kg^{-1}_{biota ww}]$	 5 for crustaceans and cephalopods 		
for the sum of benzo[a]p, benzo[b]f, benzo[k]f and		- 10 for molluscs		
indeno[1,2,3-cd]p (carcinogenic PAHs)	[µg.l ⁻¹]	1.7 10 ⁻⁴ (freshwater and marine waters)	See section 7.3	
Human health via consumption of water, <i>valid for the sum</i> of benzo[b]f, benzo[k]f, benzo[ghi]p and indeno[1,2,3-cd]p	[µg.l ⁻¹]	0.1		

⁵ Please note that as recommended in the Technical Guidance for deriving EQS (E.C., 2010), "EQSs [...] are not reported for 'transitional and marine waters', but either for freshwater or marine waters". If justified by substance properties or data available, QS for the different protection objectives are given independently for transitional waters or coastal and territorial waters.

4 MAJOR USES AND ENVIRONMENTAL EMISSIONS

4.1 USES AND QUANTITIES

All data hereunder are extracted from Final CTPHT EU-RAR (E.C., 2008a)

4.1.1 Production

Final CTPHT EU-RAR (E.C., 2008a) states that within the European Union, high temperature coal tar pitch including 5 and 6 rings PAHs is produced "by ten companies at eleven sites in nine countries. The total European Union production capacity in 2004 was 1,127,000 tonnes. The actual production output of coal tar pitch in that year was about 817,800 tonnes. Import from outside the EU was reported to be about 91,600 tonnes per year and export was about 355,600 tonnes per year. The total consumption of coal tar pitch in the EU from these figures is estimated to be about 554,000 tonnes per year."

4.1.2 Uses

Coal tar pitch is mainly used as a binding agent in the production of carbon electrodes, anodes and Søderberg electrodes for instance for the aluminium industry. It is also used as a binding agent for refractories, clay pigeons, active carbon, coal briquetting, road construction and roofing. Furthermore small quantities are used for heavy duty corrosion protection (see Table 2.1 of Final CTPHT EU-RAR).

4.2 ESTIMATED ENVIRONMENTAL EMISSIONS

4.2.1 Sources of PAH emissions (E.C., 2008a)

Industrial sources

"The most important industrial emission sources include coke production, primary aluminium production and creosote and wood preservation. CTPHT is produced at coke plants as such and as a by-product of primary steel production. The main source of PAH emissions in the iron and steel industry is the coke ovens, used to make coke for the steel production. (...) The coke industries improved their PAH emissions markedly by applying modern technology. Nevertheless, old installations still have high PAH emissions, leading to local high ambient air concentrations (E.C., 2001). PAH emissions at steel production using electric arc furnaces originate from the presence of tar in the used refractory material."

"Creosote is a distillation product of coal tar, a by-product of bituminous coal coking. Emissions of PAH take place at all stages of the wood preservation process: impregnation, storage, transport and use. In the creosote and wood preservation industry, wood is mainly impregnated under pressure in vessels, but can also be sprayed or dipped. Since 2003 creosoted wood is only to be used for certain applications by professionals when treated in vacuum/pressure installations. Creosoted wood, which is treated through spraying, brushing or dipping is banned in the European Union. Creosoted wood is completely banned for certain applications like playgrounds, garden and garden furniture according to the EU Directive 2001/90/EC. Consequently wood preservation through spraying and dipping has been phased out in the European Union. Therefore emission from this source is expected to reduce considerably. PAH emissions to air from solvent use, which includes wood impregnation, in the United Kingdom clearly decreased over the period 1990 till 2002 from 104

tonnes to 69 tonnes with no clear decrease in the period 2000 till 2002. From this information it might be concluded that there is not clear direct effect on emissions from PAH resulting from the enforcement of the EU Directive at least in the United Kingdom. Other industrial sources include petrochemical and related industries (refineries), bitumen and asphalt industries (production and use), waste incineration, power plants, rubber tyre production, cement production (combustion of fossil fuels) and motor test rigs."

Domestic sources

"PAH-emissions from domestic sources are predominantly associated with the combustion of solid fuels as wood and coal for heating and cooking purposes. These sources contribute significantly to the total PAH emission. In Europe there is a large geographic variation in these domestic emissions due to climatic differences and to the heating systems in use. In addition to heating purposes, wood, coal or peat are also burned for the decorative effect in open fireplaces."

Mobile sources

"Mobile sources include all modes of transport using a combustion engine. PAH emissions from these sources depend on engine type, fuel type, emission control, outdoor temperature, load of vehicle, age of the car/engine and driving habits. Diesel fuelled vehicles have higher particulate emissions and the emission control equipment is less developed than gasoline vehicles. Therefore, diesel fuelled vehicles are responsible for more PAH emissions on the road. The wear and tear of tyres is also an important source of PAH emissions. Due to the extensive use of catalytic converters and improved diesel quality, the PAH emissions from tyres could even be larger than those from the exhaust of vehicles (Edlund, 2001). Non road transport includes all PAH emissions from combustion engines used by shipping activities, railways and aircrafts."

Agricultural sources

"Agricultural sources involve the burning of organic materials under less optimum combustion activities and therefore produce significant amounts of PAH. These activities include stubble burning, open burning of land for regeneration purposes or the open burning of brushwood, trimmings, straw etc. In some EU countries there are regulations in place regulating these emissions (E.C., 2001)."

4.2.2 PAH emissions to the different compartments (E.C., 2008a)

Emissions to water

"PAH can be emitted to surface water directly or indirectly via a STP by (industrial) point sources and via atmospheric deposition. Information on PAH emission to surface water for the EU is limited to the EPER database. Based on the emission estimates for 1998 in the Netherlands, road transport is considered to be by far the largest emission source to water, followed by emissions from agriculture and consumers. The emission from industry is relatively small. The European Pollutant Emission Register (EPER, 2004) reports PAH emission of the different point sources for 2001 (see Table below). The largest industrial emission sources to water are the pre-treatment of fibres or textiles, based on the EPER data."

PAH emissions to water in the EU for 2001 (The European Pollutant Emission Register (EPER, 2004)

Source	Direct (kg)	Indirect via STP (kg)
Industrial processes Iron and steel production Petroleum industry Basic organic chemicals Pharmaceutical products Pre-treatment fibres or textiles 	10 271 558 1519 0 0	381 151 16 36 12 284
Industrial combustion	1 022	6
- Installations for the production of carbon or graphite	21	0

- Slaughterhouses, plants for the production of milk other animal or vegetable raw materials	267	77
- Industrial plants for pulp from timber or other paper or board production	6	0
Waste disposal	259	80
	6	0
Total	13 923	13 031

5 ENVIRONMENTAL BEHAVIOUR

5.1 ENVIRONMENTAL DISTRIBUTION

Benzo[a]pyrene		Master reference
Water solubility (mg.l ⁻¹)	1.54 10 ⁻³	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a
Volatilisation	Benzo[a]pyrene is not likely to volatilis	se from surface water.
Vapour pressure (Pa)	7.3 10 ⁻⁷ at 25°C	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a
Henry's Law constant (Pa.m ³ .mol ⁻¹)	0.034 at 20°C	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a
Adsorption	The value of 831 764 is used for derivation of QS	
Organic carbon – water partition coefficient (K _{OC})	$log K_{OC} = 5.92 (calculated from K_{OW})$ $K_{OC} = 831764$	Karickhoff <i>et al</i> ., 1979
Sediment – water partition coefficient(Ksed -water)	20 795 (calculated from K_{OC})	E.C., 2010
Bioaccumulation	BCF, BMF ₁ and BMF ₂ values recommended for back calculation of QS _{biota} values to water reported in the dedicated following section 5.3.	
Octanol-water partition coefficient (Log Kow)	6.11 (<i>estimated</i>)	Mackay et al., 1992 <i>in</i> E.C., 2008a
Coefficient (Log Kow)	6.13 (experimental)	US-EPA, 2008

Benzo[b]fluoranthene		Master reference
Water solubility (mg.l ⁻¹)	1.28 10 ⁻³	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a
Volatilisation	Benzo[b]fluoranthene is not likely to volatilise from surface water.	
Vapour pressure (Pa)	3.3 10 ⁻⁶ at 25°C	Mackay <i>et al</i> ., 1992 <i>in</i> E.C., 2008a
Henry's Law constant (Pa.m ³ .mol ⁻¹)	0.051 at 20°C	Mackay <i>et al</i> ., 1992 <i>in</i> E.C., 2008a
Adsorption	The value of 831 764 is used for deriv	vation of QS
Organic carbon – water partition coefficient (K _{OC})	$log K_{OC} = 5.92 (calculated from K_{OW})$ $K_{OC} = 831 764$	Karickhoff <i>et al</i> ., 1979
Sediment – water partition coefficient(K _{sed} -water)	20 795 (calculated from K_{OC})	E.C., 2010
Bioaccumulation	BCF, BMF ₁ and BMF ₂ values recommended for back calculation of QS _{biota} values to water reported in the	

	dedicated following section 5.3	
Octanol-water partition coefficient (Log Kow)	6.12 (estimated)	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a
coefficient (Log Kow)	5.78 (experimental)	US-EPA, 2008

Benzo[k]fluoranthene		Master reference
Water solubility (mg.l ⁻¹)	0.93 10 ⁻³	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a
Volatilisation	Benzo[k]fluoranthene is not likely to ve water.	olatilise from surface
Vapour pressure (Pa)	1.3 10 ⁻⁷ at 25°C	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a
Henry's Law constant (Pa.m ³ .mol ⁻¹)	0.043 at 20°C	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a
Adsorption	The value of 794 328 is used for deriv	vation of QS
Organic carbon – water partition coefficient (Koc)	$log K_{OC} = 5.9 (calculated from K_{OW})$ $K_{OC} = 794 328$	Karickhoff <i>et al</i> ., 1979
Sediment – water partition coefficient(Ksed -water)	19 859 (calculated from K_{OC})	E.C., 2010
	BCF, BMF1 and BMF2 values recom	mended for back
Bioaccumulation	calculation of QS _{biota} values to water	reported in the
	dedicated following section 5.3.	
	6.11 (estimated)6.11 (experimental)	Mackay et al., 1992
Octanol-water partition coefficient (Log Kow)		<i>in</i> E.C., 2008a
coefficient (Log Kow)		US-EPA, 2008

Benzo[g,h,i]perylene		Master reference	
Water solubility (mg.l ⁻¹)	0.14 10 ⁻³	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a	
Volatilisation	Benzo[g,h,i]perylene is not likely to vo water.	Benzo[g,h,i]perylene is not likely to volatilise from surface water.	
Vapour pressure (Pa)	1.4 10 ⁻⁸ at 25°C	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a	
Henry's Law constant (Pa.m ³ .mol ⁻¹)	0.027 at 20°C	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a	
Adsorption	The value of 1 023 293 is used for derivation of QS		
Organic carbon – water partition coefficient (K _{OC})	$log K_{OC} = 6.01 (calculated from K_{OW})$ $K_{OC} = 1 023 293$	Karickhoff <i>et al.</i> , 1979	
Sediment – water partition coefficient(Ksed -water)	25 583 (calculated from K_{OC})	E.C., 2010	
Bioaccumulation	BCF, BMF ₁ and BMF ₂ values recommended for back calculation of QS _{biota} values to water reported in the dedicated following section 5.3.		
Octanol-water partition	6.7 (estimated)	Mackay et al., 1992 in E.C., 2008a	
coefficient (Log Kow)	6.63 (experimental)	US-EPA, 2008	

Indeno[1,2,3-cd]pyrene		Master reference	
Water solubility (mg.l ⁻¹)	1 10 ⁻⁴	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a	
Volatilisation	Indeno[1,2,3-cd]pyrene is not likely to volatilise from surface water.		
Vapour pressure (Pa)	1.7 10 ⁻⁸ at 25°C	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a	
Henry's Law constant (Pa.m ³ .mol ⁻¹)	0.046 at 25°C (estimated)	Mackay <i>et al.</i> , 1992 <i>in</i> E.C., 2008a	
Adsorption	The value of 1 344 229is used for der	ivation of QS	
Organic carbon – water partition coefficient (Koc)	$log K_{OC} = 6.37 (calculated from K_{OW})$ $K_{OC} = 1 344 229$	Karickhoff <i>et al.</i> , 1979	
Sediment – water partition coefficient(Ksed -water)	58 607 (calculated from Koc)	E.C., 2010	
Bioaccumulation	BCF, BMF ₁ and BMF ₂ values recommended for back calculation of QS _{biota} values to water reported in the dedicated following section 5.3.		
Octanol-water partition coefficient (Log Kow)	6.7 (estimated)	Mackay et al., 1992 in E.C., 2008a	

5.2 ABIOTIC AND BIOTIC DEGRADATIONS

All information reported hereunder are extracted from Final CTPHT EU-RAR (E.C., 2008a).

Hydrolysis	PAH are chemically stable, with no functional groups that results in hydrolysis. Under environmental
11yul 01ysis	conditions, therefore, hydrolysis does not contribute to the degradation of PAH (Howard et al., 1991).
	The main abiotic transformation is photochemical decomposition, which in natural water takes place only in
	the upper few centimetres of the aqueous phase. PAHs are photodegraded by two processes, direct photolysis
	by light with a wavelength < 290 nm and indirect photolysis by least one oxidizing agent (Volkering and
Dh a ta haata	Breure, 2003). Singlet oxygen usually plays the main role in this process and the degradation process is related
Photolysis	to the content of oxygen dissolved (Moore and Ranamoorthy, 1984).
	When PAHs are absorbed on particles, the accessibility for photochemical reactions may change, depending
	on the nature of the particles. There are great differences in photochemical reactivity between the various
	PAHs.

The results from standard test for biodegradation in water show that PAH with up to four aromatic rings are biodegradable under aerobic conditions but that the biodegradation rate of PAH with more aromatic rings is very low (EHC, 1998). Although some evidence for anaerobic transformation of PAHs has been obtained (Coates <i>et al.</i> , 1997; Thierrin <i>et al.</i> , 1993), PAHs are usually considered to be persistent under anaerobic conditions (Neff, 1979; Volkering and Breure, 2003). Because marine sediments are often anaerobic, degradation of PAHs in this compartment is expected to be very slow. The biochemical pathway for the aerobic biodegradation of PAHs has extensively been investigated. It is understood that the initial step in the aerobic catabolism of a PAH molecule by bacteria occurs via oxidation of the PAH to a dihydrodiol by a multicomponent enzyme system. These dihydroxylated intermediates may then be processed through either an ortho cleavage type of pathway, in which ring fission occurs between the two hydroxylated carbon atoms, or a meta cleavage type of pathway, which involves cleavage of the bond adjacent to the hydroxyl groups, leading to central intermediates such as protocatechates and catechols. These compounds are further converted to tricarboxylic acid cycle intermediates (van der Meer <i>et al.</i> , 1992). Although the biodegradation pathway of the different PAHs is very similar their biodegradation rates differ considerably. In general the biodegradation rate decreases with increasing number of aromatic rings. For example, for degradation by bacteria from estuary half lives for B[a]P of more than 1750 days was found (Gerlach, 1981). According to Volkering and Breure (2003), two factors are considered responsible for the difference in degradation rate. First, the bacterial uptake rates of the compounds with higher molecular weight PAHs. This is illustrated by Durant <i>et al.</i> , 1995 who found that the half-life of PAHs in estuarine sediment. Since the Kow and the Koc are strongly correlated, high molecu
Maagd, 1996). In addition, the desorption rate of PAH appears to decrease with increase of the residence time of

5.3 BIOACCUMULATION AND BIOMAGNIFICATION POTENTIAL

		Master reference		
Bioaccumulation	The BCF values of 57 981 (molluscs), 11 138 (crustaceans and cephalopods) and 135 (fish) for benzo[a]pyrene are used for derivation of QS _{biota sec. pois} . for all 5-6 rings PAHs and BMF ₁ = BMF ₂ = 1 given the absence of biomagnification (Bleeker, 2009; E.C., 2010).			
BCF	Values per taxa based on data reported in the BCF dedicated table below for benzo[a]pyrene: - BCF plants = 910 (one value) - BCF annelids = 7 317 (one value) - BCF molluscs = 57 981 (geo. mean) - BCF crustaceans = 11 138 (geo. mean) - BCF fish = 135 (geo. mean)	Bleeker, 2009		
BSAF anguilla	Sum of 5 rings PAH (including Benzo[b]fluoranthene and Benzo[k]fluoranthene: 0.003 – 0.06 Sum of 6 rings PAH (including Benzo[g,h,i]perylene and Indeno[1,2,3-cd]pyrene: 0.02 – 0.2	van der Oost <i>et al.</i> , 1994 <i>in</i> E.C., 2008a		

Taxa	Species	Test system	Chem. Analysis	BCF (l.kg ⁻¹)	Type (c)	Reliability	Reference
Benzo[a]pyrene							
Pisces	Lepomis macrochirus	FT	¹⁴ C	$367 - 608^{1}$	Kin.	2	Jimenez et al., 1987
		FT	¹⁴ C	30	Kin.	2	McCarthy and Jimenez, 1985
Mollusca	Dreissena polymorpha	S	³ H	$41\ 000 - 84\ 000^2$	Kin.	2	Bruner et al., 1994
		S	³ H	$24\ 000 - 273\ 000^3$	Kin.	2	Gossiaux et al., 1996
	Perna viridis	SR	GC	8 500 ⁴	Equi.	2	Richardson et al., 2005
Crustacea	Daphnia magna	SR	HPLC	12 761	Equi.	2	Newsted and Giesy, 1987
		S	¹⁴ C	2 837	Equi.	2	Leversee et al., 1981
	Eurytemora affinis		GCMS	1 750 ⁵	Equi.	2	Cailleaud et al., 2009
	Mysis relicta	FT	³ H	8 496	Kin.	2	Evans and Landrum, 1989
	Pontoporeia hoyi	FT	¹⁴ C	73 000	Kin.	1	Landrum, 1988
			³ H	48 582	Kin.	2	Evans and Landrum, 1989
Insecta	Chironomus riparius (4th instar larvae)	S	¹⁴ C	650	Equi.	2	Leversee et al., 1982
		S	¹⁴ C	166	Equi.	2	Leversee et al., 1981
	Hexagenia limbata	FT	³ H	2 725 – 11 167 ⁷	Kin.	2	Landrum and Poore, 1988
Oligochaeta	Stylodrilus heringianus	FT	³ H	7 317	Kin.	2	Frank et al., 1986
Magnoliophyta	Lemna gibba	S	¹⁴ C	$7 - 910^{6}$	Kin.	2	Duxbury et al., 1997
Benzo[k]fluorantl	hene					-	
Crustacea	Daphnia magna	SR	HPLC	13 225	Equi.	2	Newsted and Giesy, 1987
Benzo[g,h,i]peryle	ene				1	-	
Crustacea	Daphnia magna	SR	HPLC	28 288	Equi.	2 2	Newsted and Giesy, 1987

Table summarising BCF values for PAH 5-6 rings in several aquatic species (Bleeker, 2009)

a) FT: flow-through system; S: static; SR: static renewal. b) ¹⁴C: radioactive carbon in the parent compound; GC: Gas chromatography; GCMS: Gas chromatography with mass spectrometry; Flu.Spec.: fluorescence spectrometry; 3H: radioactive hydrogen in the parent compound; HPLC: high pressure liquid chromatography. c) Kin.: Kinetic BCF, i.e. *k*1/*k*2; Equi.: BCF at (assumed) equilibrium, i.e. Corganism/Cwater. d) Reliability; 1: valid without restrictions; 2: valid with restrictions.

¹ BCFs were determined at different feeding regimes, i.e. fed both during uptake and depuration, not fed during uptake but fed during depuration.

² BCFs were determined with tested animals that differ in lipid content.

³ BCFs were determined at different exposure temperatures.

⁴ In this study BCF values are based on lipid weight, values given in this table are normalized to 5% lipid content.

⁵ BCFs are based on dry weight.

⁶ Values represent (a range of) BCF values from (a range of) different exposure concentrations.

6 AQUATIC ENVIRONMENTAL CONCENTRATIONS

6.1 ESTIMATED CONCENTRATIONS

As sufficient monitoring data are available no separate calculation of the regional PECs had been performed. Therefore, only C_{local} values are presenting hereunder.

6.1.1 Benzo[a]pyrene

Compartment		Predicted environmental concentration (PEC)	Master reference	
Freshwater (µg.l ⁻¹)	Clocal - production	1.7 10 ⁻⁸ - 7.6 10 ⁻³	E.C., 2008a	
Freshwater (µg.1 ⁻)	Clocal - primary Al production	$4.6\ 10^{-4} - 0.46$	E.C., 2008a	
	Clocal - production	6 10-6		
Marine waters (µg.l ⁻¹)	Clocal - ferro-alloy producing ind.	0.001	E.C., 2008a	
	Clocal - primary Al production	5.9 10 ⁻⁴ - 0.36		
Freshwater sediment (µg.kg ⁻¹ dw)	Clocal - production	$1.5 \ 10^{-3} - 736$	E.C., 2008a	
Treshwater sediment (µg.kg dw)	Clocal - primary Al production	$39 - 38\ 000$	E.C., 2008a	
	Clocal - production	0.27		
Marine sediment (µg.kg ⁻¹ dw)	Clocal - ferro-alloy producing ind.	79.7	E.C., 2008a	
	Clocal - primary Al production	$0.012 - 30\ 000$		
Biota (freshwater)		No data avail	able	
Biota (marine)		No data available		
Biota (marine predators)		No data available		

6.1.2 Benzo[b]fluoranthene

Compartment		Predicted environmental concentration (PEC)	Master reference	
Emochanton $(u = 1^{-1})$	Clocal - production	1.8 10 ⁻⁸ - 1.2 10 ⁻²	E.C., 2008a	
Freshwater (µg.l ⁻¹)	Clocal – primary Al production	$9.8 10^{-4} - 0.98$	E.C., 2008a	
	Clocal - production	3 10-6		
Marine waters (µg.1 ⁻¹)	Clocal - ferro-alloy producing ind.	1.9 10 ⁻³	E.C., 2008a	
	Clocal - primary Al production	$2.5 \ 10^{-4} - 0.79$		
Freshwater adjment (ug kg-1 dw)	Clocal - production	1.5 10 ⁻³ – 1 104	E.C. 2008a	
Freshwater sediment (µg.kg ⁻¹ dw)	Clocal - primary Al production	$80 - 79\ 000$	E.C., 2008a	
	$C_{local-production}$	0.23		
Marine sediment (µg.kg ⁻¹ dw)	$C_{local - ferro-alloy producing ind.}$	153.5	E.C., 2008a	
	Clocal - primary Al production	$0.012 - 64\ 000$		
Biota (freshwater)		No data availa	able	
Biota (marine)		No data available		
Biota (marine predators)		No data available		

6.1.3 Benzo[k]fluoranthene

Compartment		Predicted environmental concentration (PEC)	Master reference		
Freshwater (μ g.1 ⁻¹)	Clocal - production	1.8 10 ⁻⁸ - 3.8 10 ⁻³	E.C., 2008a		
Marine waters (µg.1 ⁻¹)	Clocal – production	3 10-6	E.C., 2008a		
Freshwater sediment (µg.kg ⁻¹ dw)	Clocal – production	$1.5 \ 10^{-3} - 345$	E.C., 2008a		
Marine sediment (µg.kg ⁻¹ dw)	Clocal – production	0.23	E.C., 2008a		
Biota (freshwater)		No data availa	No data available		
Biota (marine)		No data availa	No data available		
Biota (marine predators)		No data availa	No data available		

6.1.4 Benzo[g,h,i]perylene

Compartment		Predicted environmental concentration (PEC)	Master reference	
Enclosed $(u = 1^{-1})$	Clocal - production	$1.5 \ 10^{-8} - 4.2 \ 10^{-3}$	E.C. 2008-	
Freshwater (μ g.l ⁻¹)	Clocal - primary Al production	$1.6\ 10^{-4} - 0.12$	E.C., 2008a	
	Clocal - production	2 10-6		
Marine waters (µg.1 ⁻¹)	Clocal - ferro-alloy producing ind.	4 10-4	E.C., 2008a	
	Clocal - primary Al production	$1.2 \ 10^{-4} - 0.12$		
Enabrystan and mant (up log-1 day)	Clocal - production		E.C., 2008a	
Freshwater sediment (µg.kg ⁻¹ dw)	Clocal - primary Al production	$13 - 12\ 000$	E.C., 2008a	
	Clocal - production	0.30		
Marine sediment (µg.kg ⁻¹ dw)	Clocal - ferro-alloy producing ind.	42	E.C., 2008a	
	Clocal - primary Al production	$0.32 - 12\ 000$		
Biota (freshwater)		No data avail	able	
Biota (marine)		No data available		
Biota (marine predators)		No data available		

6.1.5 Indeno[1,2,3]pyrene

Compartment		Predicted environmental concentration (PEC)	Master reference	
Encohypetan $(u = 1^{-1})$	Clocal - production	8 10 ⁻⁹ - 2.6 10 ⁻³	E.C., 2008a	
Freshwater (µg.l ⁻¹)	Clocal - primary Al production	9.2 10 ⁻⁴ - 0.91	E.C., 2008a	
	Clocal - production	1 10-6		
Marine waters (µg.1 ⁻¹)	$C_{local - ferro-alloy producing ind.}$	2 10-4	E.C., 2008a	
	Clocal - primary Al production	$2.3 \ 10^{-6} - 0.071$		
	Clocal – production 2 10 ⁻³ – 690		E.C., 2008a	
Freshwater sediment (µg.kg ⁻¹ dw)	Clocal - primary Al production	$21 - 21\ 000$	E.C., 2008a	
	Clocal - production	0.37		
Marine sediment (µg.kg ⁻¹ dw)	Clocal - ferro-alloy producing ind.	53.6	E.C., 2008a	
	Clocal - primary Al production	$0.55 - 17\ 000$		
Biota (freshwater)		No data avail	able	
Biota (marine)		No data available		
Biota (marine predators)		No data available		

6.2 MEASURED CONCENTRATIONS

6.2.1 Benzo[a]pyrene

Compartment		Measured environmental concentration (MEC)		Master reference	
Freshwater (µg.1 ⁻¹)		PEC 1: PEC 2:	0.035 0.025	Letter $d = 2000^{(l)}$	
Marine waters (coastal and/or transitional) $(\mu g.l^{-1})$		No data available		James <i>et al.</i> , 2009 ⁽¹⁾	
WWTP effluent (µg.1 ⁻¹)	No data available			
	Sed < 2 mm	PEC 1: PEC 2:	300 217		
Sediment(µg.kg ⁻¹ dw)	Sed 20 µm	PEC 1: PEC 2:	1 119 1 103	James <i>et al.</i> , 2009 ⁽¹⁾	
	Sed 63µm	PEC 1: PEC 2:	24 22		

Biota(µg.kg ⁻¹ ww)	Invertebrates	PEC 1:	6	
		PEC 2:	4	James <i>et al.</i> , 2009 ⁽¹⁾
	Fish	PEC 1:	0.014	
	Г 1511	PEC 2:	0.014	
	Marine predators	No data available		

⁽¹⁾ data originated from EU monitoring data collection

6.2.2 Benzo[b]fluoranthene

Compartment		Measured environmental concentration (MEC)		Master reference	
Freshwater (µg.l ⁻¹)		PEC 1: PEC 2:	0.036 0.05	James <i>et al.</i> , 2009 ⁽¹⁾	
Marine waters (coastal and/or transitional) $(\mu g.l^{-1})$		No data available		James et al., 2009	
WWTP effluent ($\mu g.l^{-1}$)			No data available		
	Sed < 2 mm	PEC 1: PEC 2:	422 310		
Sediment(µg.kg ⁻¹ dw)	Sed 20 µm	PEC 1: PEC 2:	1 428 1 238	James <i>et al.</i> , 2009 ⁽¹⁾	
	Sed 63µm	PEC 1: PEC 2:	54 47		
Biota(µg.kg ⁻¹ ww)	Invertebrates	PEC 1: PEC 2:	23 11	James <i>et al.</i> , 2009 ⁽¹⁾	
	Fish	No data available			
	Marine predators	No data		available	

⁽¹⁾ data originated from EU monitoring data collection

6.2.3 Benzo[k]fluoranthene

Compartment		Meast environ concent (ME	mental ration	Master reference	
Freshwater (µg.l ⁻¹)		PEC 1: PEC 2:	0.03 0.025	Lamos et $r_{l} = 2000(l)$	
Marine waters (coastal and/or transitional) $(\mu g.l^{-1})$		No data available		James <i>et al.</i> , 2009 ⁽¹⁾	
WWTP effluent (µg.1 ⁻¹)			No data available		
	Sed < 2 mm	PEC 1: PEC 2:	219 135		
Sediment(µg.kg ⁻¹ dw)	Sed 20 µm	PEC 1: PEC 2:	589 586	James <i>et al.</i> , 2009 ⁽¹⁾	
	Sed 63µm	PEC 1: PEC 2:	23 19		
Biota(µg.kg ⁻¹ ww)	Invertebrates	PEC 1: PEC 2:	15 13	James <i>et al.</i> , 2009 ⁽¹⁾	
	Fish	No data available			
	Marine predators	No data		available	

⁽¹⁾ data originated from EU monitoring data collection

6.2.4 Benzo[g,h,i]perylene

Compartment		Measu environi concent (ME	nental ration	Master reference	
Freshwater (µg.l ⁻¹)		PEC 1: PEC 2:	0.031 0.05	James <i>et al.</i> , 2009 ⁽¹⁾	
Marine waters (coastal and/or transitional) (µg.l ⁻¹)		No data a	vailable	James <i>et ut.</i> , 2009	
WWTP effluent (μ g.1 ⁻¹)			No data	available	
	Sed < 2 mm	PEC 1: PEC 2:	249 180		
Sediment(µg.kg ⁻¹ dw)	Sed 20 µm	PEC 1: PEC 2:	753 715	James <i>et al.</i> , 2009 ⁽¹⁾	
	Sed 63µm	PEC 1: PEC 2:	20 19		
Biota(µg.kg ⁻¹ ww)	Invertebrates	PEC 1: PEC 2:	8 7	James <i>et al.</i> , 2009 ⁽¹⁾	
	Fish	No data available			
(1) data originated from EU	Marine predators	No data		available	

⁽¹⁾ data originated from EU monitoring data collection

Compartment		Measured environmental concentration (MEC)		Master reference	
Freshwater (µg.l ⁻¹)		PEC 1: PEC 2:	2.6 0.025	Lamps at al. $2000^{(l)}$	
Marine waters (coastal and/or transitional) $(\mu g.l^{-1})$		No data available		James <i>et al.</i> , 2009 ⁽¹⁾	
WWTP effluent (μ g.l ⁻¹)		No data available		available	
	Sed < 2 mm	PEC 1: PEC 2:	218 171		
Sediment(µg.kg ⁻¹ dw)	Sed 20 µm	PEC 1: PEC 2:	740 735	James <i>et al.</i> , 2009 ⁽¹⁾	
	Sed 63µm	PEC 1: PEC 2:	32 34		
Biota(µg.kg ⁻¹ ww)	Invertebrates	PEC 1: 8 PEC 2: 7		James <i>et al.</i> , 2009 ⁽¹⁾	
	Fish	No data available			
	Marine predators	No data		available	

6.2.5 Indeno[1,2,3-cd]pyrene

⁽¹⁾ data originated from EU monitoring data collection

7 EFFECTS AND QUALITY STANDARDS

Final CTPHT EU-RAR (E.C., 2008a) states that "PAHs can be toxic via different mode of actions, such as non-polar narcosis and phototoxicity. The last is caused by the ability of PAHs to absorb ultraviolet A (UVA) radiation (320-400 nm), ultraviolet B (UVB) radiation (290-320 nm), and in some instances, visible light (400–700 nm). This toxicity may occur through two mechanisms: photosensitization, and photomodification. Photosensitization generally leads to the production of singlet oxygen, a reactive oxygen species that is highly damaging to biological material. Photomodification of PAHs, usually via oxidation, results in the formation of new compounds and can occur under environmentally relevant levels of actinic radiation (Lampi et al., 2005). The phototoxic effects can be observed after a short period of exposure, which explains why for PAHs like anthracene, fluoranthene and pyrene, where photoxicity is most evident, the acute toxicity values are even lower than the chronic toxicity values. According to Weinstein and Oris (1999) there is a growing body of evidence which suggests that phototoxic PAHs may be degrading aquatic habitats, particularly those in highly contaminated areas with shallow or clear water. For example, the photoinduced chronic effects of anthracene have been reported at those UV intensities occurring at depths of 10 to 12 m in Lake Michigan (Holst & Giesy, 1989). In addition to direct uptake of PAHs from the water column, another potential route of exposure for aquatic organisms is their accumulation from sediments (see e.g. Clemens et al., 1994; Kukkonen & Landrum, 1994), followed by subsequent solar ultraviolet radiation exposures closer to the surface. Ankley et al. (2004) also concluded in their peer review that PAHs are present at concentrations in aquatic systems such that animals can achieve tissue concentrations sufficient to cause photoactivated toxicity. Although UV penetration can vary dramatically among PAH-contaminated sites, in their view it is likely that at least some portion of the aquatic community will be exposed to UV radiation at levels sufficient to initiate photoactivated toxicity. They do recognize that at present time, the

ability to conduct PAH photoactivated risk assessment of acceptable uncertainty is limited by comprehensive information on species exposure to PAH and UV radiation during all life stages. PAH exposure and uptake, as well as UV exposure, are likely to vary considerably among species and life stages as they migrate into and out of contaminated locations and areas of high and low UV penetration. For all but sessile species, these patterns of movements are the greatest determinant of the risk for photoactivated toxicity. Despite these uncertainties, it is thought that the phototoxic effects cannot be ignored in the present risk assessment. Therefore these effects are also considered in deriving the PNECs for aquatic species. It should be noted that the UV exposure levels of the selected studies did not exceed the UV levels under natural sun light conditions.

7.1 ACUTE AND CHRONIC AQUATIC ECOTOXICITY

Ecotoxicity data reported in the tables hereunder were extracted exclusively from the finalised version of CTPHT EU-RAR (E.C., 2008a) and an RIVM report in preparation (Verbruggen, in prep.).

In the table below, all data reported were considered valid for effects assessment purpose, i.e. could be affected a reliability index (Klimisch code) of 1 or 2, or were considered useful as supporting information for effects assessment purpose, i.e. could be affected a reliability index (Klimisch code) of 2/3. Information on reliability were retrieved from finalised version of CTPHT EU-RAR (E.C., 2008a) and an RIVM report in preparation (Verbruggen, in prep.).

Averaged measured concentrations are tagged as (mm).

7.1.1 Benzo[a]pyrene

ACUTE EFFECT	S – Benzo[a]pyr	ene	Klimmisch code	Master reference	
Bacteria (mg.l ⁻¹)	Freshwater	Vibrio fischeri / 30mn EC _{10 - bioluminescence} > water solubility	2 acc ^{ing} to RIVM	Loibner et al., 2004	
(g)	Marine				
Algae & aquatic plants	Freshwater	No inform	ation available		
(mg.l ⁻¹)	Marine	No inform	ation available		
	Freshwater	Daphnia magna (<24h) / 48h / ⁽¹⁾ EC ₅₀ >2.7 10 ⁻³ No effects observed	2 acc ^{ing} to RIVM	Bisson et al., 2000b	
Invertebrates (mg.l ⁻¹)		Daphnia pulex (1.9-2.1mm) / 96h / ⁽²⁾ LC ₅₀ = 5 10 ⁻³	2/3 acc ^{ing} to RIVM	Trucco et al., 1983	
	Marine	No information available			
	Sediment	No information available			
Fish	Freshwater	Pimephales promelas (larvae) / 120h / ⁽³⁾ LC ₅₀ < 5.6 10 ⁻³	2/3 acc ^{ing} to RIVM	Oris and Giesy, 1987	
(mg.l ⁻¹)	Marine	No inform	ation available	1	
	Sediment	No information available			

(1) exposure in the dark

⁽²⁾ 12:12 h photoperiod, with mixed fluorescent and natural light.

 $^{(3)}$ LT50 study, at the end of the 96-h test period no mortality effect was found for phenanthrene and dibenzo[a,h]anthracene and less than 20% for benzo[ghi]perylene; simulated UV-A at 95 μ W/m2 and UV-B at 20 μ W/m2; 24 h preincubation with toxicant without light; only 1 concentration tested

tested CHRONIC EFFE	CTS – Benzo[a]j	byrene	Valid according to	Master reference			
Algae & aquatic plants (mg.l ⁻¹)	Freshwater	Pseudokirchneriella subcapitata / 72h (1) EC _{10-growth} = 7.8 10 ⁻⁴	2 acc ^{ing} to RIVM and EU- RAR	Bisson <i>et al.</i> , 2000a			
(mg.i *)	Marine	No int	No information available				
	Freshwater	Ceriodaphnia dubia / 7d / $^{(2)}$ EC _{10 - reproduction} = 5 10 ⁻⁴	2 acc ^{ing} to RIVM and EU- RAR	Bisson et al., 2000a			
		$\frac{\text{EC}_{10-\text{reproduction}} = 5 \ 10^{-4}}{\text{Crassostrea gigas / 48h / (1)}}$ $\text{NOEC}_{\text{abnormal shells}} = 1 \ 10^{-3}$	2/3 acc ^{ing} to RIVM and EU-RAR				
		Crassostrea gigas / 48h / ⁽²⁾ NOECabnormal shells = 5 10 ⁻⁴ EC10 - abnormal shells = 2.2 10 ⁻⁴	2/3 acc ^{ing} to RIVM and EU-RAR	Lyons <i>et al.</i> , 2002 <i>in</i> E.C., 2008a			
Invertebrates (mg.l ⁻¹)	Marine	Crassostrea gigas / $48h / (^{2})$ EC _{10 - larval development} $\geq 1.6 \ 10^{-3} (mm)$	2 acc ^{ing} to RIVM	AquaSense, 2004			
		Strongylocentrus purpuratus (eggs and sperm) / 48h NOECgastrula deformities = 5 10 ⁻⁴	2 acc ^{ing} to RIVM	Hose et al., 1983			
		Psammechinus miliaris / 48h / (2) EC10 - larval development $\geq 1.6 \ 10^{-3} \ (mm)$	2 acc ^{ing} to RIVM	AquaSense, 2005			
	Sediment	No information available					
		Brachydanio rerio / 42d / ⁽³⁾ NOEC _{ELS} ≥ 4 10 ⁻³ (one conc. tested) No effects observed	2 acc ^{ing} to RIVM	Hooftman and Evers- de Ruiter, 1992			
Fish (mg.l ⁻¹)	Freshwater	Brachydanio rerio (larvae) / 168d / $^{(3)}$ NOECmalformation \geq 4.4 10 ⁻⁴ (one conc.tested)No effects observed	2 acc ^{ing} to RIVM	Petersen and Kristensen, 1998			
		Oncorhynchus mykiss / 36d $EC_{10-ELS-abnormalities} \ge 2.9 \ 10^{-3}$	2 acc ^{ing} to RIVM	Hannah <i>et al.</i> , 1982			
	Marine	Psettichtys melanostichus / 6d NOEC _{hatchability} < 1 10 ⁻⁴ (one conc. tested)	2/3 acc ^{ing} to RIVM	Hose et al., 1982			
	Sediment	No int	formation available	<u> </u>			
A 5	1						

⁽¹⁾6000-8000 lux on the level of the solutions

⁽²⁾ 16:8 h photoperiod.

(3) 16:8 h photoperiod, yellow light

Acute studies for freshwater species are available for crustaceans and fish. Chronic studies for fresh water species are available for algae, crustaceans, and fish. In addition, chronic studies for marine species are available for molluscs, echinoderms, and fish.

The acute test led by Bisson et al. (2000) on *Daphnia magna* did not result in any toxic effects. The 48h-EC₅₀ of 2.7 µg.l⁻¹ for crustacean *Daphnia magna* can however be used as endpoint for MAC-

QS_{water, eco} derivation. Assessment factors of 10 and 100 can reasonably be applied on this data to derive MAC_{freshwater, eco} and MAC_{marine water, eco}, respectively.

Many data are available that correspond to studies where no effects were observed. The EC_{10} of 0.22 µg.l⁻¹ for shell development of the marine mollusc *Crassostrea gigas* is used as the most critical endpoint to use for AA-QS_{water, eco} derivation. Because additional chronic toxicity data are available for two groups of typical marine species, the assessment factor deemed necessary for both freshwater and marine water is 10.

Tentative QS _{water} Assessment factor method	Relevant study for derivation of QS	AF	Tentative QS
MAC freshwater, eco	Daphnia magna / 24h	10	0.27 μg.l ⁻¹
MAC marine water, eco	$EC_{50} > 2.7 \ 10^{-3} \ mg.l^{-1}$	100	0.027 μg.l ⁻¹
AA-QSfreshwater, eco	<i>Crassostrea gigas /</i> 48h	10	0.022 μg.l ⁻¹
AA-QSmarine water, eco	$EC_{10-abnormal shells} = 2.2 \ 10^{-4} \ mg.l^{-1}$	10	0.022 μg.l ⁻¹
AA-QSfreshwater, sed.	No data available for sediment-dwelling	EqP	35.2 μg.kg ⁻¹ _{ww}
AA-QSmarine water, sed.	organisms. Therefore, EqP method was applied to derive the AA-QS	1-	91.5 µg.kg ⁻¹ dw

7.1.2 Benzo[b]fluoranthene and Benzo[k]fluoranthene

Data usable to derive the QS for benzo[b]fluoranthene are scarce. Because the two substances are mostly reported together and have structural similarities, it is proposed to combine benzo[b]fluoranthene and benzo[k]fluoranthene ecotoxicological data to derive a common $QS_{water, eco}$.

ACUTE EFFECT	<u>S – Benzo[b]f. a</u>	nd Benzo[k]f.	Klimmisch code	Master reference			
Bacteria	Freshwater	No informatio	No information available				
(mg.l ⁻¹)	Marine	Vibrio fischeri / 30mn EC _{10 - bioluminescence} > water solubility	2 acc ^{ing} to RIVM	Loibner et al., 2004			
Algae & aquatic plants	Freshwater	No acute data are available but that "chronic data for <i>Pseudokirchneriella subcapitata</i> indicat an $EC_{10-growth-72h} > 1 \ 10^{-3}$ and acute data is expected to be higher".					
(mg.l ⁻¹)	Marine	No information available					
	Freshwater	Data are available for [b] and [k] isomer for <i>Daphnia magna</i> only but that no effects were observed (>1.1 10^{-3} mg.l ⁻¹) in the two available studies (Bisson <i>et al.</i> , 2000a; Verrhiest <i>et al.</i> , 2001) and that "due to the low solubility of benzo(k)fluoranthene of about 1 µg.l ⁻¹ (Mackay and al., 2000), acute effects are not anticipated".					
Invertebrates	Marine	No informatio	n available				
(mg.l ⁻¹)	Sediment	No toxicity was observed up to highest concentrations tested on Rhepoxynius abronius (test with benzo[b]fluoranthene), nor on Hyalella azteca and Chironomus riparius (test with benzo[k]fluoranthene)2 acc ^{ing} to RIVMBoese et all Verrhiest et Werrhiest et 					
Fish	Freshwater						
(mg.l ⁻¹)	Marine	No information available					
(mg.i)	Sediment	No information available					

CHRONIC EFFE	CTS - Benzo[b]	f. and Benzo[k]f	Valid according to	Master reference			
Algae & aquatic plants (mg.l ⁻¹)	Freshwater	Pseudokirchneriella subcapitata / 72h / [b] and [k] EC _{10 - growth} > 1 10 ⁻³	2 acc ^{ing} to RIVM and EU- RAR	Bisson <i>et al.</i> , 2000a			
(iiig.i)	Marine	No inf	ormation available				
Invertebrates (mg.l ⁻¹)	Freshwater	Ceriodaphnia dubia (<24h) / 7d / [b] and [k] EC _{10 - reproduction} > 1.08 10 ⁻³	2 acc ^{ing} to RIVM and EU- RAR	Bisson <i>et al.</i> , 2000a			
		$\begin{aligned} \hline Daphnia \ magna \ (<24h) \ / \ 21d \ / \ [k] \\ \hline EC_{10-mortality, offspring intrinsic growth \\ rate \ > 2.2 \ 10^{-3} \ (mm) \end{aligned}$	2 acc ^{ing} to RIVM	AquaSense, 2004			
	Marine	Crassostrea gigas / 48h / [k] EC _{10 - larval development} > 2.6 (mm)	2 acc ^{ing} to RIVM	AquaSense, 2004			
		Psammechinus miliaris / 48h / [k] EC10 – larval development > 2.6 (mm)	2 acc ^{ing} to RIVM	AquaSense, 2004			
	Sediment	No inf	No information available				
Fish	Freshwater	$Brachydanio \ rerio \ / \ 42d \ / \ [k]$ $EC_{10 - length} = 1.7 \ 10^{-4}$ $EC_{10 - weight} = 3.1 \ 10^{-4}$	2 acc ^{ing} to RIVM and EU- RAR	Hooftman and Evers- de Ruiter, 1992			
(mg.l ⁻¹)	Marine	No inf	No information available				
	Sediment	No inf	formation available				

No acute data is available for fish for benzo[b]fluoranthene and benzo[k]fluoranthène while fish is shown to be the most sensitive taxa in the chronic dataset. Therefore, it is decided to set the MAC-QS_{water, eco} at the level of the AA-QS_{water, eco}.

As regards chronic toxicity, data are available for algae, crustaceans and fish. In addition, additional marine data are available for molluscs and specific marine taxa echinoderm. The lowest EC_{10} value is found for *Brachydanio rerio* at 0.17 µg.l⁻¹. Because additional chronic toxicity data are available for two groups of marine species, the assessment factor deemed necessary for both freshwater and marine water is 10.

Tentative QS _{water} Assessment factor method	Relevant study for derivation of QS	AF	Tentative QS		
MAC freshwater, eco	No sufficient data available	-	MAC-QS is set equal to AA-QS: 0.017 µg.l ⁻¹		
MAC marine water, eco		-	MAC-QS is set equal to AA-QS: 0.017 µg.l ⁻¹		
AA-QSfreshwater, eco	Brachydanio rerio / 42d	10	0.017 μg.l ⁻¹		
AA-QSmarine water, eco	$EC_{10-length} = 1.7 \ 10^{-4} \ mg.l^{-1}$	10	0.017 μg.l ⁻¹		
	No topicity was absorbed up to high out		B[b]fluo.	B[k]fluo.	
AA-QSfreshwater, sed.	No toxicity was observed up to highest concentrations tested. Therefore, EqP method was applied to derive the AA-	EqP	27.2 μg.kg ⁻¹ _{ww} 70.7 μg.kg ⁻¹ _{dw}	26.0 μg.kg ⁻¹ _{ww} 67.5 μg.kg ⁻¹ _{dw}	
AA-QSmarine water, sed.	QS		27.2 μg.kg ⁻¹ _{ww} 70.7 μg.kg ⁻¹ _{dw}	26 μg.kg ⁻¹ _{ww} 67.5 μg.kg ⁻¹ _{dw}	

7.1.3 Benzo[g,h,i]perylene

ACUTE EFFECT	S – Benzo[g,h,i]p).	Klimmisch code	Master reference		
Bacteria	Freshwater	No information available				
(mg.l ⁻¹)	Marine	Vibrio fischeri / 30mn EC _{10 - bioluminescence} > water solubility	2 acc ^{ing} to RIVM	Loibner et al., 2004		
Algae & aquatic plants	Freshwater	No acute data are available but chronic data for <i>Pseudokirchneriella subcapitata</i> indicate an $EC_{10-growth-72h} > 1.6 \ 10^{-4} \text{ mg.} \text{l}^{-1}$ and acute data is expected to be higher.				
(mg.l ⁻¹)	Marine	No information available				
Invertebrates	Freshwater	Daphnia magna / 48h $EC_{50 - immobility} > 2 \ 10^{-4}$ No effects observed	2 acc ^{ing} to RIVM and EU- RAR	Bisson <i>et al.</i> , 2000a		
(mg.l ⁻¹)	Marine	No information available				
	Sediment	No information available				
Fish	Freshwater	Pimephales promelas (larvae) / 120h / (1) <20% mortality at 1.5 10 ⁻⁴	2 acc ^{ing} to RIVM and EU- RAR	Oris and Giesy, 1987		
(mg.l ⁻¹)	Marine	No information available				
	Sediment	No information available				

(1) absence of UV-radiation and thereafter exposed to UV-light with an intensity of 20 μ W/cm² UV-B (290-336 nm), 95 μ W/cm² UV-A (336-400 nm). After the incubation time of 24 hours, the medium was renewed every 12 hours and exposure in combination with UVradiation lasted for 96 hours.

CHRONIC EFFE	CTS – Benzo[g,l	h,i]p.	Valid according to	Master reference		
Algae & aquatic plants (mg.l ⁻¹)	Freshwater	Pseudokirchneriella subcapitata / 72h $EC_{10-growth} > 1.6 \ 10^{-3}$ No effects observed	2 acc ^{ing} to RIVM	Bisson <i>et al.</i> , 2000a		
	Marine	No in	formation available			
Invertebrates	Freshwater	Ceriodaphnia dubia (<24h) / 7d EC _{10 - reproduction} = 8.2 10 ⁻⁵	2 acc ^{ing} to RIVM and EU- RAR	Bisson et al., 2000a		
(mg.l ⁻¹)	Marine	No information available				
	Sediment	No information available				
Fish	Freshwater	Brachydanio rerio / 42d NOEC _{ELS} $\geq 1.6 \ 10^{-4}$	2 acc ^{ing} to RIVM and EU- RAR	Hooftman and Evers- de Ruiter, 1992		
(mg.l ⁻¹)	Marine	No information available				
	Sediment	No information available				

Beside the toxicity on marine bacterium *Vibrio fisheri*, no additional data on marine species are available.

Acute and chronic toxicity data are available for crustaceans and fish. Algae are not represented in the acute dataset but the chronic data show that crustaceans represent the most sensitive taxa so the dataset is considered complete.

The acute test led by Bisson et al. (2000) on *Daphnia magna* did not result in any toxic effects. The higher than 48h-EC₅₀ of 0.2 μ g.l⁻¹ for crustacean *Daphnia magna* can however be used as endpoint for MAC-QS_{water, eco} derivation. Assessment factors of 10 and 100 can reasonably be applied on this data to derive MAC_{freshwater, eco} and MAC marine water, eco, respectively.

The lowest EC_{10} of 0.082 µg.l⁻¹ is found for reproduction of *Ceriodaphnia dubia*. Assessment factors of 10 and 100 can be applied to this data to derive the AA-QS_{freshwater, eco} and AA-QS_{marine water, eco}, respectively.

Tentative QS _{water} Assessment factor method	Relevant study for derivation of QS	AF	Tentative QS
MAC freshwater, eco	Daphnia magna / 48h	100	MAC-QS = $0.002 \ \mu g.l^{-1}$ but can not be lower than AA-QS. Therefore MAC-QS is set equal to AA-QS = $8.2 \ 10^{-3} \ \mu g.l^{-1}$
MAC marine water, eco	$EC_{50 - immobility} > 2 \ 10^{-4} \ mg.l^{-1}$	1000	MAC-QS = $2 \ 10^{-4} \ \mu g.l^{-1}$ but can not be lower than AA-QS. Therefore MAC-QS is set equal to AA-QS = $8.2 \ 10^{-4} \ \mu g.l^{-1}$
AA-QSfreshwater, eco	Ceriodaphnia dubia / 7d	10	8.2 10 ⁻³ μg.l ⁻¹
AA-QSmarine water, eco	$EC_{10-reproduction} = 8.2 \ 10^{-5}$	100	8.2 10 ⁻⁴ μg.l ⁻¹
AA-QSfreshwater, sed.	No data available for sediment-dwelling organisms. Therefore, EqP method was	EqP	16.1 μg.kg ⁻¹ ww 42 μg.kg ⁻¹ dw
AA-QSmarine water, sed.	applied to derive the AA-QS		1.6 μg.kg ⁻¹ ww 4.2 μg.kg ⁻¹ dw

7.1.4 Indeno[1,2,3-cd]pyrene

ACUTE EFFECT	S –Indeno[1,2,3-	cd]p.	Klimmisch code	Master reference			
	Freshwater	No information available					
Bacteria (mg.l ⁻¹)	Marine	Vibrio fischeri / 30mn EC _{10 - bioluminescence} > water solubility	2 acc ^{ing} to RIVM	Loibner <i>et al.</i> , 2004			
Algae & aquatic plants	Freshwater	No information available					
(mg.l ⁻¹)	Marine	No in	No information available				
Invertebrates	Freshwater	No information available					
(mg.l ⁻¹)	Marine	No information available					
	Sediment	No information available					
Fish	Freshwater						
	Marine	No information available					
(mg.l ⁻¹)	Sediment						
CHRONIC EFFE	CTS –Indeno[1,2	2,3-cd]p.	Valid according to	Master reference			
Algae & aquatic plants	Freshwater	Pseudokirchneriella subcapitata / 72h EC _{10 - growth} = 1.5 10 ⁻³	2 acc ^{ing} to RIVM and EU- RAR	Bisson et al., 2000a			
(mg l ⁻¹)	24.1						

Prairies		$EC10 - growth = 1.5 \cdot 10^{-5}$			
(mg.l ⁻¹)	Marine	No information available			
Invertebrates	Freshwater	2 acc ^{ing} to RIVM and EU- RAR	Bisson et al., 2000a		
(mg.l ⁻¹)	Marine	$EC_{10-reproduction} = 2.7 \ 10^{-4}$ No information available			
	Sediment	No information available			
Fish	Freshwater	No information available			
(mg.l ⁻¹)	Marine				
(<u></u>)	Sediment				

Acute data set for indeno[1,2,3-cd]pyrene is not sufficient to derive MAC-QS values. The chronic base-set is as well not complete for indeno[1,2,3-cd]pyrene, with missing information on chronic toxicity to fish. Therefore, no quality standard can be derived.

Tentative QS _{water} Assessment factor method	Relevant study for derivation of QS	AF	Tentative QS	
MAC freshwater, eco	No sufficient data available	-	No sufficient data available	
MACmarine water, eco		-		
AA-QSfreshwater, eco	No sufficient data mailable	-	No sufficient data quailable	
AA-QSmarine water, eco	No sufficient data available	-	No sufficient data available	
AA-QSfreshwater, sed.	No data available for sediment-dwelling		-	
AA-QSmarine water, sed.	organisms.		-	

7.2 SECONDARY POISONING

Data on the PAH toxicity to birds are scarce (Albers and Laoughlin, 2003; Patton and Dieter, 1980) and Final CTPHT EU-RAR (E.C., 2008a) states that "from these data it is not possible to derive a NOAEL for birds for either of the PAHs". "Also relevant toxicity data to mammals is limited. Almost all of the long term studies reported were designed to assess carcinogenic potency of PAH and are not considered appropriate for secondary poisoning assessment.

Only for B[a]pyrene reprotoxicity data are available. Most severe effect were observed after administration of 10 mg.kg⁻¹ to CD-1 mice by gavage during gestation which produced decreased gonadal weights and reduced fertility and reproductive capacity in the offspring. Higher doses (40 mg.kg⁻¹) caused almost complete sterility in both sexes of offspring ({Mackenzie, 1981 #7518}). As no concentrations are tested a NOAEL can not be determined and consequently no QS can be derived.

Other mammalian toxicity data for Benzo[a]pyrene from 90 days studies with mice resulted in higher NOAELs (Mackenzie and Angevine, 1981). Whilst QS could be derived from these data in the usual way, the reprotoxicity data for Benzo[a]pyrene suggest that such a value might not be adequately protective and the ecological relevance of the adverse effect on which some of the NOAELs are based, might also be questionable.

Based on the available information QS_{biota, sec. pois.} values for the individual PAHs can not be derived.

Secondary poisoning of top p	Master reference	
Mammalian oral toxicity	Mice / gavage during gestation LOEC = $10 \text{ mg.kg}^{-1}_{\text{food}}$	{Mackenzie, 1981 #7518}
Avian oral toxicity	No available information	

Tentative QSbiota secpois	Relevant study for derivation of QS	AF	Tentative QS
Biota	No available information		

7.3 HUMAN HEALTH

Human health via consumption	on of fishery products			Master reference		
	Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene and Indeno[1,2,3-cd]pyrene are carcinogenic (cf. below). No test results usable as such are available for assessment purpose of possible effects to human <i>via</i> the consumption of fishery products for these carcinogenic substances.					
Mammalian oral toxicityBenzo[g,h,i]perylene is a non carcinogenic substances (cf. below). Therefore, it is deem acceptable to use a TDI. A RIVM report (Baars <i>et al.</i> , 2001) has used the TPHCWG method (TPHCWG, 1997) (calculate a TPH fraction specific RfD for non carcinogenic PAHs, which is deemed app benzo[g,h,i]perylene. The TL _{hh} proposed by RIVM is 0.03 mg.kg ⁻¹ bw.d ⁻¹						
CMR ¹²	Carc.	Muta.	Repr.			
	1B	1B	1B	E.C., 2008b		
Benzo[a]pyrene	1	-	-	IARC, 2009		
	B2	-	-	EPA, 1986 ¹³		
Benzo[b]fluoranthene	1B	nc	nc	E.C., 2008b		
	2B	-	-	IARC, 2009		
	B2	-	-	EPA, 1986 ¹³		
	1B	nc	nc	E.C., 2008b		
Benzo[k]fluoranthene	2B	-	-	IARC, 2009		
	B2	-	-	EPA, 1986 ¹³		
	nc	nc	nc	E.C., 2008b		
Benzo[g,h,i]perylene	3	-	-	IARC, 2009		
	nc	-	-	EPA, 1986 ¹³		
	nc	nc	nc	E.C., 2008b		
Indeno[1,2,3-cd]pyrene	2B	-	-	IARC, 2009		
	B2	-	-	EPA, 1986 ¹³		

For the four carcinogenic substances (Benzo[a]pyrene, Benzo[b]fluoranthene,

Benzo[k]fluoranthene and Indeno[1,2,3-cd]pyrene), there are no test results available which are usable as such for assessment purpose of possible effects to human *via* the consumption of fishery products. However, Regulation 1881/2006/EC sets maximum levels for certain contaminants in foodstuffs. In Section 6 of its Annex, Polycyclic Aromatic Hydrocarbons are addressed and maximum levels are given for foodstuffs content of benzo[a]pyrene.

Maximum levels given for "fresh" (other than smoked) aquatic resources are the following:

- Fish: $2 \mu g.kg^{-1}ww$
- Crustaceans and cephalopods: 5 µg.kg⁻¹_{ww}
- Bivalve molluscs: 10 µg.kg⁻¹_{ww}

As not other data are available up to date to assess protection of human health from consumption of fishery products, it seems relevant to make use of these maximum levels to estimate a possible $QS_{biota, hh}$.

¹² nc: not classified; According to E.C., 2008b – Carc./Muta/Repr. 1B: presumed to have carcinogenic/mutagenic/reprotoxic effects; According to EPA, 1986 – Carc. B2: probable carcinogen; According to IARC, 2009 – 1: Carcinogenic to humans; 2B: Possibly carcinogenic to humans; 3: Not classifiable as to its carcinogenicity to humans.

¹³ U.S. EPA. 1986. Guidelines for Carcinogen Risk Assessment. 51 FR 33992-34003

Footnote of the Regulation 1881/2006/EC Annex indicates that "Benzo(a)pyrene, for which maximum levels are listed, is used as a marker for the occurrence and effect of carcinogenic polycyclic aromatic hydrocarbons. These measures therefore provide full harmonisation on polycyclic aromatic hydrocarbons in the listed foods across the Member States." Given that information, it is deemed relevant to use this value for the 4 carcinogenic compounds of the 5-6 rings PAH studied in this factsheet, that are Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene and Indeno[1,2,3-cd]pyrene.

For the back calculation of $QS_{biota, hh}$ into water, the BCF values of 57 981, 11 138 and 135 are used for mollusc, crustaceans and fish, respectively. BMF₁ and BMF₂ values are equal to 1 (cf. section 5.3).

Tentative QSbiota hh	Relevant data for derivation of QS	AF	Threshold Level (mg.kg ⁻¹ ww)	Tentative QS _{biota, hh}
Human health		red app e B[a]p ish crustace	licable to sum of carcinogenic b, B[b]fluo., B[k]fluo. and eans and cephalopods B[g,h,i]perylene: TL _{hh} proposed by	 fish: 2 μg.kg⁻¹ww corresponding to 0.015 μg.l⁻¹ molluscs: 10 μg.kg⁻¹ww corresponding to 1.7 10⁻⁴ μg.l⁻¹ crustaceans and cephalopods: 5 μg.kg⁻¹ww corresponding to 4.5 10⁻⁴ μg.l⁻¹ 1 826 μg.kg⁻¹ww corresponding to 0.03 μg.l⁻¹ (using molluscs BCF)
			$RIVM = 0.03 mg.kg^{-1}ww$	$13.5 \mu\text{g.l}^{-1}$ (using fish BCF)

For corresponding values in water, the worst case values of 1.7 10^{-4} and 0.03 µg.l⁻¹ are retained for the carcinogenic substances and benzo[g,h,i]perylene, respectively.

Human health via	Master reference	
Existing drinking water standard(s)	 0.1 μg.l⁻¹ for the sum of concentrations of: benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene. 	Directive 98/83/EC

8 BIBLIOGRAPHY, SOURCES AND SUPPORTIVE INFORMATION

Albers and Laoughlin (2003). "*cited in* E.C. (2008). European Union Risk Assessment Report for Coal-Tar Pitch, High Temperature (CAS-No.: 65996-93-2, EINECS-No.: 266-028-2)(Final report, Environment). Institute for Health and Consumer Protection - European Chemicals Bureau."

AquaSense (2004). Toxicity tests with priority substances in the Water Framework Directive. AquaSense, Amsterdam, The Netherlands

AquaSense (2005). Toxicity tests with priority substances in the Water Framework Directive. AquaSense, Amsterdam, The Netherlands, Report number 2034

Baars A.J., Theelen R.M.C., Janssen P.J.C.M., Hesse J.M., van Apeldoom M.E., Meijerink M.C.M., Verdam L. and Zeilmaker M.J. (2001). Re-evaluation of human-toxicological maximum permissible risk levels. RIVM report 711701 025. RIVM, Bilthoven. March 2001. <u>http://www.rivm.nl/bibliotheek/rapporten/711701025.pdf</u>.

Bisson M., Dujardin R., Flammarion P., Garric J., Babut M., Lamy M.-H., Porcher J.-M., Thybaud É. and Vindimian É. (2000a). Complément au SEQ-Eau: méthode de détermination des seuils de qualité pour les substances génotoxiques. INERIS, Verneuil-en-Halatte. 6 avril 2000. ln2.

Bisson M., Dujardin R., Flammarion P., Garric J., Babut M., Lamy M.-H., Porcher J.-M., Thybaud É. and Vindimian É. (2000b). Complément au SEQ-Eau: méthode de détermination des seuils de qualité pour les substances génotoxiques. Institut National de l'Environnement Industriel et des Risques (INERIS), Agence de l'eau Rhin-Meuse, Verneuil-en-Halatte, France

Bleeker E.A.J. (2009). Bioaccumulation of polycyclic aromatic hydrocarbons in aquatic organisms. RIVM report 601779 002. RIVM, Bilthoven. 2009. <u>http://www.rivm.nl/bibliotheek/rapporten/601779002.pdf</u>.

Boese B.L., Lamberson J.O., Swartz R.C., Ozretich R. and Cole F. (1998). "Photoinduced toxicity of PAHs and alkylated PAHs to a marine infaunal amphipod (*Rhepoxynius abronius*)." <u>Archives of Environmental Contamamination</u> and Toxicology **34**: 235-240.

Bruner K.A., Fisher S.W. and Landrum P.F. (1994). "The Role of the Zebra Mussel, *Dreissena polymorpha*, in Contaminant Cycling: I. The Effect of Body Size and Lipid Content on the Bioconcentration of PCBs and PAHs." Journal of Great Lakes Research **20**(4): 725-734.

Cailleaud K., Budzinski H., Le Menach K., Souissi S. and Forget-Leray J. (2009). "Uptake and elimination of hydrophobic organic contaminants in estuarine copepods: An experimental study." <u>Environmental Toxicology and Chemistry</u> **28**: 239-246.

Coates J.D., Woodward J., Allen J., Philp P. and Lovley D.R. (1997). "Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments." <u>Applied and Environmental Microbiology</u> **63**(9): 3589-3593.

De Maagd P.G.J. (1996). <u>Polycyclic aromatic hydrocarbons: fate and effects in the aquatic environment. Academic Thesis</u>. Utrecht, The Netherlands.

Durant N.D., Wilson L.P. and Bouwer E.J. (1995). "Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant." Journal of Contaminant Hydrology 17(3): 213-237.

Duxbury C.L., Dixon D.G. and Greenberg B.M. (1997). "Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed *Lemna gibba*." <u>Environmental Toxicology and Chemistry</u> **16**(8): 1739-1748.

E.C. (2001). Ambient Air Pollution by Polycyclic Aromatic Hydrocarbons (PAH). Position Paper. Prepared by the Working Group on Polycyclic Aromatic Hydrocarbons. July, 2001.

E.C. (2004). Commission staff working document on implementation of the Community Strategy for Endocrine Disrupters - a range of substances suspected of interfering with the hormone systems of humans and wildlife (COM(1999) 706)). SEC(2004) 1372. European Commission, Brussels

E.C. (2008a). European Union Risk Assessment Report for Coal-Tar Pitch, High Temperature (CAS-No.: 65996-93-2, EINECS-No.: 266-028-2)(Final report, Environment). Institute for Health and Consumer Protection - European Chemicals Bureau. May, 2008.

E.C. (2008b). Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 (Text with EEA relevance). Official Journal of the European Union. **L353:** 1355.

E.C. (2010). Draft Technical Guidance Document for deriving Environmental Quality Standards (January 2010 version). Not yet published

Edlund (2001). "*cited in* E.C. (2008). European Union Risk Assessment Report for Coal-Tar Pitch, High Temperature (CAS-No.: 65996-93-2, EINECS-No.: 266-028-2)(Final report, Environment). Institute for Health and Consumer Protection - European Chemicals Bureau."

EHC (1998). "*cited in* E.C. (2008). European Union Risk Assessment Report for Coal-Tar Pitch, High Temperature (CAS-No.: 65996-93-2, EINECS-No.: 266-028-2)(Final report, Environment). Institute for Health and Consumer Protection - European Chemicals Bureau."

EPER (2004). The European Pollutant Emission Register (EPER). URL:<u>http://www.eea.europa.eu/data-and-maps/data/eper-the-european-pollutant-emission-register-4</u>.

Evans M.S. and Landrum P.F. (1989). "Toxicokinetics of DDE, Benzo(a)Pyrene, and 2, 4, 5, 2', 4', 5'-Hexachlorobiphenyl in *Pontoporeia Hoyi* and *Mysis Relicta*." Journal of Great Lakes Research **15**(4): 589-600.

Frank A.P., Landrum P.F. and Eadie B.J. (1986). "Polycyclic aromatic hydrocarbon : rates of uptake, depuration, and biotransformation by lake Michigan *Stylodrilus heringianus*." <u>Chemosphere</u> **15**: 317-330.

Gerlach S.A. (1981). Marine pollution. Diagnosis and Therapy, Springer Verlag.

Gossiaux D.C., Landrum P.F. and Fisher S.W. (1996). "Effect of temperature on the accumulationb kinetics of PaHs and PCBs in the zebra mussel, Dreissena polymorpha." <u>J Great Lakes Res</u> 22: 379-388.

Groshart C. and Okkerman P.C. (2000). Towards the establishment of a priority list of substances for further evaluation of their role in endocrine disruption: preparation of a candidate list of substances as a basis for priority setting. Final report (incorporating corrigenda to final report dated 21 June 2000). BKH Consulting Engineers, Delft, The Netherlands; in association with TNO Nutrition and Food Research, Zeist, The Netherlands

Hannah J.B., Hose J.E., Landolt M.L., Miller B.S., Felton S.P. and Iwaoka W.T. (1982). "Benzo(a)pyrene-induced morphologic and developmental abnormalities in rainbow trout." <u>Archives of Environmental Contamamination and Toxicology</u> **11**: 727-734.

Hooftman R.N. and Evers-de Ruiter A. (1992). Early life stage tests with *Brachydanio rerio* and several polycyclic aromatic hydrocarbons using an intermittent flow-through system (draft OECD guideline). TNO-report IMW-R 92/210. TNO Environmental and Energy Research, TNO Institute of Environmental Sciences, Delft, the Netherlands, IMW-R 92/210. 1992.

Hose J., Hannah J., DiJulio D., Landolt M., Miller B., Iwaoka W. and Felton S. (1982). "Effects of benzo [a]pyrene on early development of flatfish." <u>Arch. Environ. Contam. Toxicol.</u> **11**: 167-171.

Hose J.E., Puffer H.W., Oshida P.S. and Bay S.M. (1983). "Developmental and cytogenetic abnormalities induced in the purple sea urchin by environmental levels of benzo(*a*)pyrene." <u>Archives of Environmental Contamination and Toxicology</u> **12**(3): 319-325.

Howard P.H., Boethling R.S., Jarvis W.F., Meylan W.M. and Michelenko E.M. (1991). <u>Handbook of environmental degradation rates</u>. Chealsea, Michigan, Lewis Publishers.

IARC (2009). "Agents reviewed by the IARC Monographs. Volumes 1-100A." (1-100a).

James A., Bonnomet V., Morin A. and Fribourg-Blanc B. (2009). Implementation of requirements on Priority substances within the Context of the Water Framework Directive. Contract N° 07010401/2008/508122/ADA/D2. Final dradt prioritisation process report on monitoring-based ranking., INERIS / IOW: 58.

Jimenez B.D., Cirmo C.P. and McCarthy J.F. (1987). "Effects of feeding and temperature on uptake, elimination and metabolism of benzo(a)pyrene in the bluegill sunfish (*Lepomis macrochirus*)." <u>Aquatic Toxicology</u> **10**: 41-57.

Karickhoff S.W., Brown D.S. and Scott T.A. (1979). "Sorption of hydrophobic pollutants on natural sediments." <u>Water</u> <u>Research</u> **13**: 241-248.

Landrum P.F. (1988). "Toxicokinetics of organic xenobiotics in the amphipod *Pontoporeia hoyi* : Role of physiological and environmental variables." <u>Aquatic Toxicology</u> **12**: 245-271.

Landrum P.F. and Poore R. (1988). "Toxicokinetics of selected xenobiotics in *Hexagenia limbata*." Journal of Great Lakes Research 14: 427-437.

Leversee G.J., Giesy J.P., Landrum P.F., Gerould S., Bowling J.W., Fannin T.E. and Haddock J.D. (1982). "Kinetics and Biotransformation of Benzo(a)pyrene in *Chironomus riparius*." <u>Arch. Environ. Contam. Toxicol.</u> **11**(1): 25-31.

Leversee G.J., Giesy J.P., Landrum P.F., Bartell S., Gerould S., Bruno M., Spacie A., Bonling J., Haddock J. and Fannin T. (1981). <u>Disposition of benzo(a)pyrene in aquatic system components: periphyton, chironomids, daphnia, fish.</u> In: M. Cooke and A.J. Dennis (Eds.). Analysis and Biological Fate: Polynuclear Aromatic HydroCarbons, Columbus, OH, USA, Batelle Press. pp. 357-366.

Loibner A.P., Szolar O.H.J., Braun R. and Hirmann D. (2004). "Toxicity testing of 16 priority polycyclic aromatic hydrocarbons using Lumistox®." <u>Environmental Toxicology and Chemistry</u> **23**(3): 557-564.

Lyons B.P., Pascoe C.K. and McFadzen I.R.B. (2002). "Phototoxicity of pyrene and benzo[a]pyrene to embryo-larval stages of the pacific oyster *Crassostrea gigas*." <u>Marine Environmental Research</u> **54**(3-5): 627-631.

Mackay D. and al. e. (2000). "*cited in* E.C. (2008). European Union Risk Assessment Report for Coal-Tar Pitch, High Temperature (CAS-No.: 65996-93-2, EINECS-No.: 266-028-2)(Final report, Environment). Institute for Health and Consumer Protection - European Chemicals Bureau."

Mackay D., Shiu W.Y. and Ma K.C. (1992). <u>Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Volume II.</u> Michigan, Lewis Publishers.

Mackenzie and Angevine (1981). "*cited in* E.C. (2008). European Union Risk Assessment Report for Coal-Tar Pitch, High Temperature (CAS-No.: 65996-93-2, EINECS-No.: 266-028-2)(Final report, Environment). Institute for Health and Consumer Protection - European Chemicals Bureau."

McCarthy J. and Jimenez B. (1985). "Reduction in bioavailability to bluegills of polycyclic aromatic hydrocarbons bound to dissolved humic material." <u>Environ. Toxicol. Chem.</u> **4**: 511-521.

Moore J.W. and Ranamoorthy S. (1984). Organic chemicals in natural waters, Springer Verlag.

Neff J.M. (1979). <u>Polycyclic aromatic hydrocarbons in the aquatic environment : sources, fates and biological effects</u>. London, Applied Sciences Publishers.

Newsted J.L. and Giesy J.P. (1987). "Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to *Daphnia magna*, Strauss (Cladocera, crustacea)." <u>Environmental Toxicology and Chemistry</u> **6**(6): 445-461.

Oris J. and Giesy J.J. (1987). "The photo-induced toxicity of polycyclic aromatic hydrocarbons to larvae of the fathead minnow (*Pimephales promelas*)." Chemosphere **16**(7): 1395-1404.

Patton and Dieter (1980). "*cited in* E.C. (2008). European Union Risk Assessment Report for Coal-Tar Pitch, High Temperature (CAS-No.: 65996-93-2, EINECS-No.: 266-028-2)(Final report, Environment). Institute for Health and Consumer Protection - European Chemicals Bureau."

Petersen G. and Kristensen P. (1998). "Bioaccumulation of lipophilic substances in fish early life stages." <u>Environ</u> <u>Toxicol Chem</u> **17**: 1385-1395.

Petersen G., Rasmussen D. and Gustavson K. (2007). Study on enhancing the Endocrine Disrupter priority list with a focus on low production volume chemicals. DHI, 53559

Richardson B.J., Tse E.S.-C., De Luca-Abbott S.B., Martin M. and Lam P.K.S. (2005). "Uptake and depuration of PAHs and chlorinated pesticides by semi-permeable membrane devices (SPMDs) and green-lipped mussels (*Perna viridis*)." <u>Marine Pollution Bulletin</u> **51**: 975-993.

Thierrin J., Davis G.B., Barber C., Patterson B.M., Pribac F., Power T.R. and Lambert M. (1993). "Natural degradation rates of BTEX compounds and naphthalene in a sulphate reducing groundwater environment." <u>Hydrol. Sc. J.</u> **38**: 309-322.

TPHCWG (1997). Development of fraction-specific reference doses (RfDs) and reference concentrations (RfCs) for total petroleum hydrocarbons., Amherst (MA), USA

Trucco R., Engelhardt F. and Stacey B. (1983). "Toxicity, accumulation and clearance of aromatic hydrocarbons in *Daphnia pulex*." <u>Environ. Pollut (Series A)</u> **31**: 191-202.

US-EPA (2008). EPI Suite, v.4, EPA's office of pollution prevention toxics and Syracuse Research Corporation (SRC).

van der Meer J.R., de Vos W.M., Harayama S. and Zehnder A.J. (1992). "Molecular mechanisms of genetic adaptation to xenobiotic compounds." <u>Microbiology and Molecular Biology Reviews</u> **56**(4): 677-694.

van der Oost R., van Gastel L., Worst D., Hanraads M., Satumalay K., van Schooten F.-J., Heida H. and Vermeulen N.P.E. (1994). "Biochemical markers in feral roach (*Rutilus rutilus*) in relation to the bioaccumulation of organic trace pollutants." <u>Chemosphere</u> **29**(4): 801-817.

Verbruggen E.M.J. (in prep.). Environmental risk limits for polycyclic aromatic hydrocarbons (PAHs). RIVM, Bilthoven, The Netherlands., RIVM Report 711701xxx. 118.

Verrhiest G., Clément B. and Blake G. (2001). "Single and Combined Effects of Sediment-Associated PAHs on Three Species of Freshwater Macroinvertebrates." <u>Ecotoxicology</u> **10**(6): 363-372.

Volkering F. and Breure A.M. (2003). <u>Biodegradation and general aspects of bioavailability</u>. In: Douben (Eds.). PAHs: An Ecotoxicological Perspective, Wiley. pp. 81-98.