

Ministry of Environment of Denmark Environmental Protection Agency

GrundRisk Landfill User Guideline

Environmental Project no. 2180

March 2022

Publisher: The Danish Environmental Protection Agency

Editors: Luca Locatelli Philip Binning Majken Frederiksen Poul L. Bjerg

ISBN: 978-87-7038-313-4

The Danish Environmental Protection Agency publishes reports and papers about research and development projects within the environmental sector, financed by the Agency. The contents of this publication do not necessarily represent the official views of the Danish Environmental Protection Agency. By publishing this report, the Danish Environmental Protection Agency within the related discourse on Danish environmental policy.

Sources must be acknowledged

Forbehold

Denne rapport er en del af "Metodik til stedsspecifik risikovurdering ved deponering af affald". Rapporten er foreløbig og af oplysende karakter, og indholdet kan på nuværende tidspunkt ikke alene danne grundlag for en konkret sagsbehandling og myndighedsafgørelse. Baggrunden for dette er, at Miljøstyrelsen arbejder for at afklare særlige forhold omkring vandrammedirektivets betydning for stedsspecifik vurdering af deponeringsanlæg og påvirkningen heraf i receptor. Afklaringerne kan give anledning til konsekvensrettelser i metodikken, som den er formuleret for nuværende, og det kan være nødvendigt at rettelserne skal indarbejdes i metodikkens værktøjer herunder modelværktøjer, brugervejledninger og dokumentationsrapporter. Således må offentliggjorte rapporter og værktøjer under metodikken for nuværende betragtes som foreløbige.

Miljøstyrelsen offentliggør rapporter og indlæg vedrørende forsknings- og udviklingsprojekter inden for miljøsektoren. Det skal bemærkes, at en sådan offentliggørelse ikke nødvendigvis betyder, at det pågældende indlæg giver udtryk for Miljøstyrelsens synspunkter. Offentliggørelsen betyder imidlertid, at indlægget udgør et væsentligt indlæg i debatten omkring den danske miljøpolitik.

Risikovurderingsværktøjet er beregningsteknisk forberedt til at kunne regne med nedbrydning når et bedre datagrundlag er tilvejebragt. Derfor indgår nedbrydning i sammenfatningen, brugervejledninger og som en del af transportmodellen. Miljøstyrelsen finder på nuværende tidspunkt ikke tilfredsstillende dokumentation for at nedbrydning kan indgå som en aktiv del i sagsbehandlingen ved brug af værktøjet. Såfremt at der på et senere tidspunkt tilvejebringes ny viden er Miljøstyrelsen åben for at lade nedbrydning indgå. Det betyder at metoden er forberedt til at inkludere nedbrydning, men at Miljøstyrelsen mangler den nødvendige viden for at kunne vurdere denne i sagsbehandlingen. Ny viden kan bl.a. bestå i en opdateret samlet videnskabelig rapport, hvor det er beskrevet, hvorledes der kan regnes med nedbrydning konkret i perkolatfaner fra deponeringsanlæg.

Contents

Forbeho	ld	3
1.	Introduction	5
2.	System requirements	6
3.	How to install	7
4.	Model input parameters	8
5.	Start the program. The main window	10
6.	Affald-A single unit	12
a.	Affald-A single unit. Step by step tutorial	12
7.	Affald-A multiple units	16
a.	Discussion about the effects of a simplified source geometry	19
b.	Affald-A multiple unit. Step by step tutorial	19
8.	Affald-B single unit	23
С.	Affald-B single unit. Step by step tutorial	23
9.	Affald-B multiple units	27
d.	Affald-B multiple units. Step by step tutorial	28
10.	How to create the input .txt file	32
11.	Frequently asked questions.	34
Referenc	ces	36

1. Introduction

This is a guidance document to assist the use of the user interface GrundRisk landfills. The models of the interface are described in Miljøstyrelsen, 2018. The user interface includes 2 different models (Affald-A and Affald-B) to simulate contaminant transport from landfills. Each model has 2 different graphical user interfaces: one to simulate contaminant transport from a single source unit and one for multiple source units since landfills can be made either of a single or multiple units.

The following sections describe the details of the user interface. This user manual includes some practical tutorials/examples so that the user can see how to set up a similar case study. The input files for these tutorials are provided together with the model.

The models simulates the contaminant water phase concentration and mass discharge in the aquifer downstream the landfill. The concentrations are simulated over a 2 m well screen at a user specified distance (Point of compliance) downstream the landfill/unit. The input time series of concentration and water discharge from the landfill are obtained from the Kildestyrke-model (2017).

2. System requirements

The program was implemented in MATLAB and it is distributed in a standalone version that does not require a MATLAB license. The program is compatible with Microsoft Windows systems and it might not work with other operating systems. An internet connection is required during the installation process. Once the program is installed it can be used without internet.

3. How to install

The program needs to be installed in order to be used. The user needs to run the distributed .exe file by double clicking on it (it can take few minutes until the installation window pops up). The installation procedure will download approximately 600 MB and therefore an internet connection is required during the process. The user needs to follow the instruction similarly to other software.

4. Model input parameters

The input model parameters of the model Affald-A are shown in the following table. The report of Miljøstyrelsen (2018) shows some examples about setting the parameter values (it was recommended that the groundwater velocity u should be the one at the most downstream point of the landfill).

	Parameter	Description
Single source parameters	C ₀ (t) [M/L ³]	Concentration time series in the water phase at the source, this is provided by the Kildestyrkemodel
	Q ₀ (t) [L ³ /T]	Landfill water discharge time series through the source area, this is provided by Kildestyrke- model
	Z[L]	Distance between the bottom of the landfill unit and the top of the aquifer
	L _x [L]	Source length, this is provided by Kildestyrkemodel
	L _y [L]	Source width, this is provided by Kildestyrkemodel
Vertical model	k_v [T ⁻¹]	First order degradation rate
	θ_v [-]	Water content (fraction of the total volume)
	R_v [-]	Retardation factor
Horizontal	H [L]	Thickness of the aquifer
model	I [L/T]	Groundwater recharge
	u [L/T]	Groundwater velocity
	k [T ⁻¹]	First order degradation rate
	n [-]	Porosity
	α _L [L]	Longitudinal dispersivity (x direction)
	$\alpha_{T}[L]$	Transversal dispersivity (y direction)
	α _V [L]	Vertical dispersivity (z direction)
	R [-]	Retardation factor
	POC [L]	Distance to the point of compliance

TABLE 1. Input parameters of the model Affald-A (from Miljøstyrelsen, 2018)

Similarly, the input model parameters of the model Affald-B are shown in the following table.

	Parameter	Description
Single source parameters	C _o (t) [M/L ³]	Concentration time series in the water phase at the source, this is provided by Kildestyrke- model model
	Q ₀ (t) [L ³ /T]	Landfill water discharge time series through the source area, this is provided by Kildestyrke- model model
	L _z [L]	Source depth, this is provided by Kildestyrkemodel model
	L _y [L]	Source width, this is provided by Kildestyrkemodel model
Horizontal	H [L]	Thickness of the aquifer
model	u [L/T]	Groundwater velocity
	k [T-1]	First order degradation rate
	n [-]	Porosity
	$\alpha_{L}[L]$	Longitudinal dispersivity (x direction)
	α _τ [L]	Transversal dispersivity (y direction)
	$\alpha_{\rm V}$ [L]	Vertical dispersivity (z direction)
	R [-]	Retardation factor
_	POC [L]	Distance to the point of compliance

TABLE 2. Input parameters of the model Affald-B (from Miljøstyrelsen,2018)

5. Start the program. The main window

Once the program has been successfully installed it can be launched from the main Windows menu.

The main window of the user interface is shown in the figure below.

FIGURE 1. The main window of the user interface.

The main window of the user interface allows the user to choose between 4 different options. Each of the 2 models (Affald-A and Affald-B) has 2 options: the first simulates a single source unit of a landfill, the second a landfill made of several source units.

The following figure shows the 4 models (from Miljøstyrelsen, 2018).

FIGURE 2. Overview of the different models (from Miljøstyrelsen, 2018).

6. Affald-A single unit

The model "Affald-A single unit" (Figure 2) can be used to simulate concentration and mass discharge downstream a single landfill unit that is located above the aquifer (the bottom of the unit is above the top of the aquifer).

The interface of the model "Affald-A single unit" is shown in the following figure. The user has different options (Back to the main menu; Load model inputs).

First of all, the user must enter the input time series of concentration and water discharge that are provided by the Kildestyrkemodel (2017) (see the section "How to create the input .txt file"). The user needs to press "Browse" within the "Source inputs" box. A new window pops up where the user needs to select the input .txt file. The input file must be created correctly according to the instructions given in the section "How to create the input .txt file". If the input .txt file is made correctly the user will be able to see the 2 graphs of the input time series (water discharge and concentration) in the user interface.

Once the input time series is included then the user can save (this is optional) the input parameters by pressing "Save" in the "Save all the inputs" box. The user can also load previously saved inputs by pressing "Load model inputs". When all the input parameters are given the user can select the result file name. The result file name is recommended to have the case study name and the compound being modeled (i.e. Ryparken_Ammonium.txt). Finally, the user can run the model by clicking on the "RUN" button. The model will run and automatically pop-up a result window and write the output .txt file in the same location as the selected .txt input file.

FIGURE 3. Screenshot of the model "Affald-A single unit".

a. Affald-A single unit. Step by step tutorial

In the following we show a step by step example of how to use the model:

- 1) Open the "Affald-A single unit" window.
- 2) Load the provided input file "EX_1_Source_inputs_AffaldA_SingleUnite_con-
- stantQ_varyingC" (4 different examples are provided and the user can choose among them).
- 3) Let us type a case study name, i.e. "CASE_AAA" as shown in the following figure (at the bottom of the windows).

<< Back to the main menu	Load model inputs		
Source inputs		Vertical tras	snport parameters
200 [m] Source	e length	Include vertica	al transport: 🥅 Yes/No
120 [m] Source	e width	2.5	[-] Retardation factor
Browse select the input txt file	i Although a financial October	1.0e-4	[1/day] First order degradation rate
- decimal separator: p	ioint (not comma)	5	[m] Vertical distance to aquifer
 - 1st column = Time [] - 2nd column = Water 	/ears] flux [m3/y]	0.3	[-] Water content
nit\EX_1_Source_inputs_Affald	A_SingleUnite_constantQ_varyingC.t	× Horizontal t	ransport parameters
		100	[m] Point of compliance
Check that the input time	series are correct.	15	[m] Thickness of the aquifer
If the following graphs are	plank the input file is wrong.	80/365	[m/day] Groundwater velocity
Q [m3/y]	Source concentration [mg/L]	1.0e-4	[1/day] First order degradation rate
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0.25	[-] Porosity
0000	40	1.0	[m] Longitudinal dispersivity
5000	20.	0.01	[m] Transversal dispersivity
0000		0.005	[m] Vertical dispersivity
0 100 100	0	0.3/365	[m/day] Recharge
Time [year]	Time [year]	2.5	[-] Retardation factor
Save all the inputs (option Choose the file name (The input he file is saved in the same fol	al) time series is not saved). der as the input time series file	utputs noose Output file na e output is saved i	ame. n the same folder as the input file RUN
Inputs CASE A	AA Save C	Dut_ C/	ASE_AAA .txt

FIGURE 4. Screenshot for the step by step tutorial of the model "Affald-A single unit". The input time series are properly displayed and the user has called the case study "CASE_AAA".

- 4) The user can save the inputs (this is optional) by pressing the "Save" button. Saved inputs can then be loaded with the "Load model inputs" button.
- 5) The user can change the input parameters (remember to use a dot as decimal separator and not a comma).
- 6) Run the model by pressing the button 'RUN' and wait until the results pop-up. The result window that pops up is shown in the following.

FIGURE 5. Example of a result window of Affald-A single unit.

7) Reading the results from the pop-up window.

The top 3 graphs show the water discharge Q, the concentration and the contaminant mass discharge at the source.

The middle 3 graphs show the water discharge Q, the concentration and the contaminant mass discharge after vertical transport (at the top of the aquifer).

The 2 bottom graphs show the concentration over a 2 m well screen at the point of compliance and the contaminant mass discharge over an infinite plane (perpendicular to the groundwater flow direction) located at the point of compliance. The concentration at the POC is always computed using both a 3D model and a 1D model. The model giving the highest concentrations is the one to be used. The idea is that the 3D model is suitable for thick aquifers whereas in the case of thin aquifers the 1D model is more accurate (because the 3D model is designed for aquifers of infinite extent). Further details can be found in the main report.

At the bottom of the result window there are 2 sentences reporting the maximum concentration at the point of compliance and the 500 year accumulated contaminant mass discharge.

8) A result file called "Out_CASE_AAA.txt" is automatically created in the same folder as the input time series file. The output file contains all the output time series and it is shown in the following (the tab delimited .txt file can be opened in Excel). Each column of the output file include a time series:

Column 1. Time vertical trans. [y]. Time of the vertical transport model outputs. Column 2. Conc. vertical trans. [mg/L]. Concentration after vertical transport (the related time is in column 1).

Column 3. Mass vertical trans. [kg/y]. Mass discharge to the aquifer after vertical transport (the related time is in column 1).

Column 4. PoC_t_3D. [y]. Time of the 3D model outputs of the horizontal transport. Column 5. PoC_c_3D. [mg/L]. Concentration at the Point of compliance from the 3D model (the related time is in column 4).

Column 6. PoC_t_1D . [y]. Time of the 1D model outputs of the horizontal transport. Column 7. PoC_c_1D . [mg/L]. Concentration at the Point of compliance from the 1D model (the related time is in column 6).

Column 8. PoC_Mass_1D. [kg/y]. Mass discharge at a plane at the Point of compliance distance from the 1D model (the related time is in column 6).

File Edit Format View Help Affald-A. Single unit. This .txt file is tab delimited and can be opened in Excel. The values -999.0000 are to be ignored Simulation time: 18.3937 seconds Input file: C:\Users\lulo\Desktop\User_Interface _vl\Input_files_exam The maximum concentration at the point of compliance is 32.392363 mg/ Lx [m] 200.000000 Ly [m] 120.000000 Ly [m] 0.00822 Poc [m] 0.000000 k_v [1/day] 0.000100 k_v [1/day] 0.000100 R_v [-] 2.500000 B [m] 15.000000 u [m/day] 0.219178 k [1/day] 0.005000 R [-] 2.500000 alphat [m] 0.0050000 N [0.000000000] [0.000000000] lp4t.8 8.669817408 33.6427290038 1986.8 0.0000000000 1986.8 1985.0 0.0000000000 1985.8 0.000000000 1986.8 0.000000000 1984.1 1944.8			
He Edit Format View Help Affald-A. Single unit. This.txt file is tab delimited and can be opened in Excel. The values -999.0000 are to be ignored Simulation time: 18.3937 seconds Input file: C:\Users\lulo\Desktop\User_Interface _v1\Input_files_exam The maximum concentration at the point of compliance is 32.392363 mg/ Lx [m] 200.000000 Ly [m] POC [n] 0.000000 k_v [1/day] 0.000000 k_v [1/day] 0.000000 k_v [1/day] 0.2500000 alphat [m] 15.000000 w [n/day] 0.250000 alphat [m] 11/day] 0.005000 R [-] 2.500000 alphat [m] 0.00000000 alphat [m] 0.00000000 1976.0 0.0000000000 0.000000000 1984.8 34.6591817208 33.642729038 1987.8 1.2630477089 1985. 1985.3 33.6272851694	Out_CASE_AAA - Notepad		
<pre>Affaid-A. Single unit. this .txt file is tab delimited and can be opened in Excel. the values -999.0000 are to be ignored Simulation time: 18.3937 seconds Input file: C:\Users\lulo\Desktop\User_Interface _v1\Input_files_exam The maximum concentration at the point of compliance is 32.392363 mg/ Lx [m] 200.000000 Ly [m] 120.000000 Ly [m] 100.000000 POC [m] 100.000000 R_V [-] 2.500000 R_V [-] 2.500000 B [m] 15.000000 B [m] 15.000000 u [m/day] 0.001100 theta_V [-] 0.250000 alphat [m] 0.010000 alphat [m] 0.010000 alphat [m] 0.010000 R [-] 2.500000 Time vertical trans. [y] [mg/L] [kg/y] [y] [mg/L] [kg/y] Domotoodo 1976.0 0.0000000000 1976.0 0.0000000000 1976.0 1984.8 0.000000000 0.00000000 1985.8 0.000000000 1984. 1984.8 0.000000000 0.00000000 1985.8 0.000000000 1984. 1985.0 34.098233451 348.8249281432 1987.8 1.2630477089 1985. 1985.3 33.627281694 344.0071272825 1988.8 8.560989745 1985. 1985.8 32.6853886179 334.3715255613 1990.8 21.775408487 1986. 1985.8 31.563186936 325.93264219 1985.8 12.0375486720 1986. 1986.3 31.7979884867 325.293422194 1991.8 22.513189761 1986. 1985.5 31.3542884212 320.754370584 1993.8 32.2584178166 1988. 1986.5 31.354284212 320.7543705484 1993.8 32.2584178166 1988. 1986.5 31.354284212 320.7543705484 1993.8 32.2584178166 1988. 1986.5 31.354284212 320.7543705484 1993.8 32.2584178166 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. * m</pre>	File Edit Format View Help		
<pre>Simulation time: 18.3937 seconds Input file: C:\Users\lulo\Desktop\User_Interface _v1\Input_files_exam The maximum concentration at the point of compliance is 32.392363 mg/ Lx [m] 200.000000 Ly [m] 120.000000 k_v [1/day] 0.000822 POC m] 100.000000 k_v [1/day] 0.000100 theta.v [-] 2.500000 B [m] 15.000000 u [m/day] 0.219178 k [1/day] 0.000100 n [-] 0.250000 alphat [m] 0.000000 m [-] 2.500000 R [-] 2.500000 Time vertical trans. [y] [mg/L] [kg/y] 1976.0 0.0000000000 1976.0 0.0000000000 1976. 1984.8 0.0000000000 1985.8 0.0000000000 1984.4 1984.8 34.5691817208 353.642729038 1986.8 0.0007044508 1984. 1985.0 34.0982334451 348.8249281432 1987.8 1.2630477689 1985. 1985.5 33.1563368936 339.1893264219 1989.8 16.0075867010 1986. 1985.6 33.1563368936 339.1893264219 1989.8 16.0075867010 1986. 1985.8 32.6853886179 334.3715255613 1990.8 21.7757408487 1986. 1986.3 31.7979884867 325.2934222194 1992.8 29.9102103936 1987. 1986.8 30.9105883556 316.2153188775 1994.8 32.3281528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567</pre>	Affald-A. Single unit. This .txt file is tab de The values -999.0000 are	elimited and can be open to be ignored	ed in Excel.
The maximum concentration at the point of compliance is 32.392363 mg/ Lx [m] 200.000000 I [m/day] 0.000822 PoC [m] 100.000000 k_v [1/day] 0.000100 theta_v [-] 2.500000 Z_v [m] 5.000000 B [m] 15.000000 a [m/day] 0.219178 k [1/day] 0.00100 n [-] 2.500000 alphal [m] 1.000000 alphat [m] 0.005000 R [-] 2.500000 Time vertical trans. [y] [mg/L] [kg/y] 1976.0 0.0000000000 1976.0 0.0000000000 1976.8 0.00000000 1976.1 1984.8 34.5691817208 353.642729038 1986.8 0.0007044508 1984. 1985.3 33.6272851694 344.0071272825 1988.8 8.5669859745 1985. 1985.5 33.1563368936 339.1893264219 1989.8 16.0075867010 1986. 1985.6 31.7979884867 322.29422194 1992.8 29.9102103936 1987. 1986.8 30.9105883556 316.2153188775 1994.8 32.2854178166 1988. 1986.8 30.9105883556 316.2153188775 1994.8 32.2323631528 1988. 1986.8 30.9105883556 316.2153188775 1994.8 32.2323631528 1988. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. (m]	Simulation time: 18.3937 Input file: C:\Users\lu	′seconds lo\Desktop\User_Interfac	e _v1\Input_files_exam
Lx [m] 200.00000 Ly [m] 120.000000 F (m] 100.000000 Ly [m] 100.000000 Ly [m] 100.000000 Ly [m] 100.000000 Ly [m] 100.000000 Ly [m] 100.00000 Ly [m] 1000000 Ly [m] 1000000 Ly [m] 15.000000 U [m/day] 0.219178 k [1/day] 0.00100 alphal [m] 1.000000 alphat [m] 0.005000 R [-] 2.500000 Time vertical trans. [y] [mg/L] [kg/Y] 1976.0 0.0000000000 1976.0 1984.8 0.000000000 1985.8 0.000000000 1984. 1984.8 0.000000000 0.0000000 1985.8 0.0000000000 1984. 1985.3 33.6272851694 344.0071272825 1988.8 8.5669859745 1985. 1985.5 33.1563368936 339.1893264219 1989.8 16.0075867010 1986. 1985.6 32.2416885523 339.8324738904 1991.8 22.584178166 1988. 1986.0 32.2416885523 339.8324738904 1991.8 22.584178166 1988. 1986.3 31.7979884867 325.2934222194 1992.8 29.9102103936 1987. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. * m Ln1,Col1	The maximum concentration	on at the point of compl	iance is 32.392363 mg/
Time vertical trans. Conc. vertical trans. Mass vertical trans. [y] [mg/L] [kg/y] 1976.0 0.000000000 1976.0 1984.8 0.000000000 0.000000000 1976.0 1984.8 0.000000000 0.000000000 1985.8 1984.8 34.0982334451 348.8249281432 1987.8 0.0007044508 1984. 1985.0 34.0982334451 348.8249281432 1987.8 1.2630477089 1985. 1985.5 33.1563368936 339.1893264219 1989.8 16.0075867010 1986. 1985.8 32.66853886179 334.3715255613 1990.8 21.7757408487 1986. 1986.3 31.7979884867 325.2934222194 1991.8 26.3139876422 1987. 1986.5 31.3542884212 320.7543705484 1993.8 32.2584178166 1988. 1986.8 30.9105883556 316.2153188775 1994.8 32.3923631528 1988. 1987.0 30.4924757760 311.9380271886 1995.8 31.0316813567 1989. 1987.0 30.4924757760 311.9380271886 1995.8 31.	Lx [m] Ly [m] I [m/day] POC [m] k_v [1/day] theta_v [-] R_v [-] Z_v [m] B [m] u [m/day] k [1/day] n [-] alphat [m] alphat [m] R [-]	200.00000 120.00000 0.00822 100.00000 0.30000 2.50000 5.00000 15.00000 0.219178 0.00100 0.250000 1.00000 0.010000 0.010000 2.50000 2.50000	
Ln1, Col1	Time vertical trans. [y] [mg/L] [kg/y] 1976.0 0.0000000000 1984.8 0.0000000000 1984.8 34.5691817208 1985.0 34.0982334451 1985.3 33.6272851694 1985.5 33.1563368936 1985.8 32.6853886179 1986.0 32.2416885523 1986.3 31.7979884867 1986.5 31.3542884212 1986.8 30.9105883556 1987.0 30.4924757760	Conc. vertical trans. [y] [mg/L] [y] 0.000000000 1976.0 0.000000000 1985.8 353.6427290038 1986.8 348.8249281432 1987.8 344.0071272825 1988.8 339.1893264219 1989.8 334.3715255613 1990.8 329.8324738904 1991.8 325.2934222194 1992.8 320.7543705484 1993.8 316.2153188775 1994.8 311.9380271886 1995.8	Mass vertical trans. [mg/L] [kg/y] 0.0000000000 1976. 0.0000000000 1984. 0.0007044508 1984. 1.2630477089 1985. 8.5669859745 1985. 16.0075867010 1986. 21.7757408487 1986. 26.3139876422 1987. 29.9102103936 1987. 32.2584178166 1988. 32.3923631528 1988. 31.0316813567 1989.
Ln 1, Col 1 🔬	<		۲.
			Ln 1, Col 1

FIGURE 6. Example of an output .txt file from the model "Affald-A single unit". This .txt tab delimited file can be opened in Excel, where it will be easier to read.

7. Affald-A multiple units

The model "Affald-A multiple units" (Figure 2) can be used to simulate concentration and mass discharge downstream a landfill made of several units that are located above the aquifer (the bottom of the landfill is above the top of the aquifer).

The interface of the model "Affald-A multiple units" is shown in the following figure. The user has different options (Back to the main menu; Save all the inputs; Load model inputs).

Source inputs Vertical transport parameters 4 Select the number of different units of the landfill 200; 120; 260; 130 [m] Source length. Lx1; Lx2; etc. 100; 240; 160; 210 [m] Source width. Ly1; Ly2; etc. 100; 250; 400; 130 [m] Point of compliance Select the number of units first and the load the time series: Load the input time series: 100; 250; 400; 130 [m] Point of compliance Select the number of units first and the load the time series: Load the input time series: C:\xxxxxlinput_file.txt Load the input time series Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. Plume 1 1;2;3 Plume 2 4 Plume 4 None Plume 5 [-] Retardation factor Plume 6 2.5			Load model inputs	he main menu	<< Back to t
4 Select the number of different units of the landfill 200; 120; 260; 130 [m] Source length. Lx1; Lx2; etc. 100; 240; 160; 210 [m] Source width. Ly1; Ly2; etc. 100; 250; 400; 130 [m] Point of compliance Select the number of units first and then load the time series: Load the input time series: C:\xxxxx\input_file.txt Load the input time series Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. Plume 1 1;2;3 Plume 2 4 Plume 3 None Plume 4 None Plume 5 [-] Retardation factor 1.0 [m] Thickness of the aqu 0.01 [m] Longitudinal dispersi 0.3/365 [m/day] Recharge 2.5 [-] Retardation factor	ansport parameters	Vertical transpo		outs	Source inp
200; 120; 260; 130 [m] Source length. Lx1; Lx2; etc. 100; 240; 160; 210 [m] Source width. Ly1; Ly2; etc. 100; 250; 400; 130 [m] Point of compliance Select the number of units first and then load the time series: Load the input time series C:\xxxxxinput_file.txt Load the input time series Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. Plume 1 1;2;3 Plume 2 4 Plume 4 None Plume 5 [m] Vertical dispersivity 0.365 [m] Vertical dispersivity 0.365 [m] Vertical dispersivity 0.005 [m] Vertical dispersivity 0.3/365 [m/day] Recharge 2.5 [-] Retardation factor			ent units of the landfill	t the number of differ	4 🔻 Selec
100; 240; 160; 210 [m] Source width. Ly1; Ly2; etc. 10; 5; 13; 11 [m] Vertical distance to aquifer. z1; z2; etc. 100; 250; 400; 130 [m] Point of compliance Select the number of units first and then load the time series: Load the input time series: C:\vxxxVinput_file.txt 100/365 Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. Plume 1 1;2;3 Plume 2 4 Plume 4 None Plume 5 Plume 6	[-] Retardation factor	2.5	ce length. Lx1; Lx2; etc.	260; 130 [m] Sour	200; 120; 2
10; 5; 13; 11 [m] Vertical distance to aquifer. z1; z2; etc. 100; 250; 400; 130 [m] Point of compliance Select the number of units first and then load the time series: Load the input time series: 10: C:\xxxx\input_file.txt Load the input time series: 10: Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. 10 Plume 1 1;2;3 Plume 2 4 Plume 3 None Plume 4 None Plume 5 Plume 6	-4 [1/day] First order degradation rate	1.0e-4	ce width. Ly1; Ly2; etc.	160; 210 [m] Sour	100; 240;
100; 250; 400; 130 [m] Point of compliance Select the number of units first and then load the time series: Load the input time series: 10 [m] Thickness of the aque 100/365 C:\xxxxx\input_file.txt 10 Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. 1.0 Plume 1 1;2;3 Plume 2 4 Plume 3 None Plume 4 None Plume 5 [-] Retardation factor	5 [-] Water content	0.35	cal distance to aquifer. z1; z2; etc.	3; 11 [m] Verti	10; 5; 1
Select the number of units first and then load the time series: Load the input time series 10 [m] Thickness of the aque 100/365 Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. 1.0 Plume 1 1;2;3 Plume 2 4 Plume 3 None Plume 4 None Plume 5 Plume 6	I transport parameters	Horizontal trans	of compliance	400; 130 [m] Poin	100; 250; 4
and then load the time series. 100/365 [m/day] Groundwater vel C:boxxxinput_file.txt 1.0e-4 [1/day] First order degrad Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. 1.0 [m] Longitudinal dispersion Plume 1 1;2;3 0.01 [m] Vertical dispersivity Plume 2 4 0.005 [m] Vertical dispersivity 0.005 [m/day] Recharge 2.5 [-] Retardation factor Plume 6 100 1.0 [m] Auge and the provide t	[m] Thickness of the aquifer	10	Load the input time series	umber of units first	Select the nu
Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. 1.0e-4 [1/day] First order degrad 0.25 [-] Porosity 1.0 [m] Longitudinal dispersi 0.01 [m] Transversal dispersivi 0.005 [m] Vertical dispersivity 0.3/365 [m/day] Recharge 2.5 [-] Retardation factor	65 [m/day] Groundwater velocity	100/365	(file.txt	C:\xxxx\input
Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. 0.25 [-] Porosity Plume 1 1;2;3 0.01 [m] Longitudinal dispersive of the second dispersiv	-4 [1/day] First order degradation rate	1.0e-4			
Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the groundwater now direction creating Image: Second approximation of the grou	5 [-] Porosity	0.25	a groundwater flow direction creating	unite overlapping in th	Spacify the u
Plume 1 1;2;3 0.01 [m] Transversal dispersivity Plume 2 4 Plume 3 None Plume 4 None Plume 5 [m] Vertical dispersivity Plume 6 2.5	[m] Longitudinal dispersivity	1.0	unit must be entered at least once.	egated plumes. Each	lifferent aggr
Plume 2 4 0.005 [m] Vertical dispersivity 0.005 [m/day] Recharge 0.3/365 [m/day] Recharge 2.5 [-] Retardation factor	[m] Transversal dispersivity	0.01		1;2;3	Plume 1
Plume 3 None Plume 4 None Plume 5 Plume 6	5 [m] Vertical dispersivity	0.005		4	Plume 2
Plume 4 None 2.5 [-] Retardation factor Plume 6	65 [m/day] Recharge	0.3/365		None	Plume 3
Plume 6	[-] Retardation factor	2.5		None	Plume 4
Plume 6					Plume 5
					Plume 6
Save all the inputs (optional) Choose the file name (The input time series is not saved). The file is saved in the same folder as the input time series file. The file is saved in the same folder as the input time series file.	name. d in the same folder as the input file	uts se Output file name. utput is saved in the	I) Out; me series is not saved). Choo r as the input time series file The c	e inputs (optiona ile name (The input t ved in the same folde	Save all the Choose the fi The file is say

FIGURE 7. Screenshot of the model "Affald-A multiple units". This model does not have the user friendly option to omit the vertical transport, nevertheless the user can set the "Vertical distance to aquifer" to zero (for one or more units).

First of all the user must enter the right number of units to be simulated using the drop-down menu in the "Source inputs" window. Then the fields "Source length", "Source width", "Vertical distance to the aquifer" and "Point of compliance" must be entered. Note that there must be the same number of entries as the number of units (i.e. if there are 4 units then there must be 4 numbers in the field "Source length" and in the other fields). The number of entries must be separated by a semicolon. For instance, the landfill of Tandskov (one of the examples included Miljøstyrelsen, 2018) has 4 different units and the following figure shows how to input the 4 unit geometries, distances to the PoC, etc.

	Affald_A_multiple		- • •
a st	< Back to the main menu Load model inputs		
-X = 528,624 m, Y = 6.232,142 m	Source inputs	Vertical transp	ort parameters
CHI W Q CHI A CAR	 Select the number of different units of the landfill 	It can be omitted by s	etting vertical distances (z1, z2, etc.) = 0 m
	381; 330; 173; 308 [m] Source length. Lx1; Lx2; etc.	5	[-] Retardation factor
	142; 84.8; 179.2; 178.6 [m] Source width. Ly1; Ly2; etc.	0	[1/day] First order degradation rate
	25; 28.5; 28; 22 [m] Vertical distance to aquifer. z1; z2; etc.	0.15	[-] Water content
A A A A A A A A A A A A A A A A A A A	100; 113; 362; 375 [m] Point of compliance	-Horizontal tran	sport parameters
6.231.520 m	Select the number of units first	13	[m] Thickness of the aquifer
	and then load the time series:	116/365	[m/day] Groundwater velocity
6.520 88177 C 6.231.872 m-		0	[1/day] First order degradation rate
	Constitution units supporting in the groundwater flow disection exection	0.3	[-] Porosity
	different aggregated plumes. Each unit must be entered at least once.	1.0	[m] Longitudinal dispersivity
	Plume 1 1;4	0.01	[m] Transversal dispersivity
	Plume 2 2;3	0.005	[m] Vertical dispersivity
	Plume 3 None	0.11/365	[m/day] Recharge
	Plume 4 None	5	[-] Retardation factor
	Plume 5		
	Plume 6		
	Save all the inputs (optional) Out	puts	
	The file is saved in the same folder as the input time series file The of	output is saved in the	e same folder as the input file RUN
	Inputs_ CaseStudyXX_compoundXX Save Out	CaseStudyXX	_compoundXX .txt

FIGURE 8. Example of how to enter the 4 units of the landfill of Tandskov. The input data are provided together with the model interface and are located in the folder "Input_files_examples_for_the_tutorials"

Now the user must enter the input time series by pressing the "Browse" button within the "Source inputs" box. A new window will open where the user needs to select the input .txt file. The input file must be created correctly according to the instructions given in the section "How to create the input .txt file".

Afterwards, the user needs to specify how the different source units overlap in the groundwater flow direction forming aggregated plumes. The following figure gives some examples that show how to specify the different plumes resulting from the overlapping of single plumes from single units. The following rules apply in order to specify the overlapping in the groundwater flow direction:

- The unit numbers must be separated by a semicolon
- Each unit must appear at least once
- If a unit does not overlap with others then the user should specify a plume made of that single unit; however, if that unit already overlap with other units, the user must not specify another plume made of that single unit.
- If there are not further plumes then the user must type "None"

TABLE 3. Examples of how to specify the overlapping of different units in the case of multiple source units.

It must be kept in mind that that the source geometry Lx and Ly is simplified as discussed in the Kildestyrkemodel. The source geometry is always (1) rectangular and (2) aligned with the groundwater flow direction. This means that complex shapes and even rectangular shapes not aligned with the groundwater flow direction are always simulated as rectangular and aligned with the groundwater flow direction. This can affect the way the overlapping of the plumes is simulated. Discussion about the effect of a simplified source geometry is given in the following section.

Once the input time series is included then the user can save (this is optional) the input parameters. When all the input parameters are given the user can select the result file name and run the model by clicking on the "RUN" button. The model will run and automatically pop-up a result window and write the output .txt file in the same location as the selected .txt input file.

a. Discussion about the effects of a simplified source geometry

The simplified source (unit) geometry (always rectangular and aligned with the groundwater flow direction as discussed in the Kildestyrkemodel) can influence the way units overlap to form aggregated plumes. Therefore, the user interface was designed to give the user the possibility to choose how the plumes from single units overlap forming aggregated plumes.

The following figure shows an example of a real case study. The simulated units (the blue and yellow continuous lines) do not overlap with each other in the groundwater flow direction. Therefore the user will specify 2 different aggregated plumes (in the user interface), one made of Unit 1 (DEL 1 in the figure) and one made of Unit 2 (DEL 2). Nevertheless, a further scenario is plausible; in fact the 2 "real" units (the green lines in the figure) do overlap in the groundwater flow direction. Therefore, the user could run a further scenario where an aggregated plume (from Unit 1 and 2) is simulated.

FIGURE 9. Example of a real landfill showing how the source geometry is modified to be rectangular and aligned with the groundwater flow direction in order to be simulated. The green lines show the 'real' extension of the units and the blue and yellow continuous lines the simulated geometries of each unit.

b. Affald-A multiple unit. Step by step tutorial

In the following we show a step by step example of how to use the model:

- 1) Open the "Affald-A multiple unit" window.
- 2) Under the field "Select the number of different units of the landfill" choose "5".
- Click on "Load model inputs" and select the file "EX_4_inputs_AffaldA_MultipleUnits_5_Units.affald_a_multiple". This example contains 5 different units (Several examples are provided and the user can choose among them).
- 4) Click on "Load the input time series" and load the provided input file "EX 4 Source inputs AffaldA MultipleUnits 5 Units.txt".
- 5) Let us call the case study "CASE_BBB" as shown in the following figure.

Affaid_A_m	uitipie				
<< Back to	the main menu	Load model inputs			
Source in	puts			Vertical transp	ort parameters
5 💌 Seleo	t the number of diffe	ent units of the landfill			
200; 120; 25	i0; 100; 100 [m] Sou	ce length. Lx1; Lx2; etc.		9	[-] Retardation factor
100; 240; 12	0; 150; 180 [m] Sou	ce width. Ly1; Ly2; etc.		0.001	[1/day] First order degradation rate
10; 5; 8	; 9; 10 [m] Vert	cal distance to aquifer. z1; z2;	etc.	0.35	[-] Water content
100; 250; 30	0; 290; 600 [m] Poin	t of compliance		Horizontal tran	sport parameters
Select the n	umber of units first	Load the input time series	ור	10	[m] Thickness of the aquifer
C:\Users\lulo\Desktop\User Interface				50/365	[m/day] Groundwater velocity
_v1\Input_file	s_examples_for_the	tutorials\Affald-A multiple		0.001	[1/day] First order degradation rate
Specify the u	units overlanning in th	<pre></pre>	estina	0.25	[-] Porosity
different agg	regated plumes. Eacl	n unit must be entered at least	once.	1.0	[m] Longitudinal dispersivity
Plume 1	1			0.01	[m] Transversal dispersivity
Plume 2	2;3;4;5			0.005	[m] Vertical dispersivity
Plume 3	None			0.3/365	[m/day] Recharge
Plume 4	None			9	[-] Retardation factor
Plume 5	None				
Plume 6					
Save all th	e inputs (optiona	l)	Outp	uts	
Choose the t The file is sa	wed in the same fold	ime series is not saved). er as the input time series file	The or	e Output file name utput is saved in th	e same folder as the input file DI IN
Inpute	Case BE	B Save	Out	Case	BBB .txt

FIGURE 10. Screenshot for the step by step tutorial of the model "Affald-A multiple units". The user has called the case study "CASE_BBB".

- 6) The user can save the inputs (this is optional) by pressing the "Save" button. Saved inputs can then be loaded with the "Load model inputs" button.
- 7) The user can change the input parameters (remember to use a dot as decimal separator and not a comma).
- 8) Run the model by pressing the button 'RUN' and wait until the results pop-up. The result window that pops up is shown in the following.

FIGURE 11. Example of a result window of "Affald-A multiple units".

9) Reading the results from the pop-up window.

The top graph shows the mass discharge in the aquifer at an infinite plane located at the Point of compliance. Both the total mass discharge and the contribution from each unit are shown.

The bottom graph shows the highest concentration (over a 2 m long screen) in the aquifer. Both the total concentration and the contribution from each unit are shown. Nevertheless, it this case the maximum concentrations are given by Unit 1 (the overlapping of the other units produced smaller maximum concentrations). Note that the total mass discharge always results from all the units contributions, whereas the maximum concentrations can result from fewer units. At the bottom of the result window there are 3 sentences reporting the maximum concentrations and the 500 year accumulated contaminant mass discharge.

10) A result file called "Out_CASE_BBB.txt" is automatically created in the same folder as the input time series file. The output file contains all the output time series and it is shown in the following (the file can also be opened in Excel). The output time series (mass discharge and concentration) for each unit are found by scrolling down in the same file.

FIGURE 12. Example of an output .txt file from the model "Affald-A mulitple units"

8. Affald-B single unit

The model "Affald-B single unit" (Figure 2) can be used to simulate concentration and mass discharge downstream a single landfill unit that is partially submerged in the aquifer (the bottom of the unit is below the top of the aquifer).

The interface of the model "Affald-B single unit" is shown in the following figure. The user has different options (Back to the main menu; Save all the inputs; Load model inputs).

First of all the user must enter the input time series. The user needs to press "Browse" within the "Source inputs" box. A new window pops up where the user needs to select the input .txt file. The input file must be created correctly according to the instructions given in the section "How to create the input .txt file". If the input .txt file is made correctly the user will be able to see the 2 graphs of the input time series (water discharge and concentration) in the user interface.

Once the input time series is included then the user can save (this is optional) the input parameters. When all the input parameters are given the user can select the result file name and run the model by clicking on the "RUN" button. The model will run and automatically pop-up a result window and write the output .txt file in the same location as the selected .txt input file.

FIGURE 13. Screenshot of the model "Affald-B single unit".

c. Affald-B single unit. Step by step tutorial

In the following we show a step by step example of how to use the model: 9) Open the "Affald-B single unit" window.

- Load the provided input file "EX_1_Source_inputs_AffaldB_SingleUnite_varyingQ_varyingC" (4 different examples are provided and the user can choose among them).
- 11) Let us call the case study "CASE_CCC" as shown in the following figure

ModelBsing	le					
<< Back to t	the main menu	Load model inp	outs			
Source inp	outs				Horizontal trar	sport parameters
2	[m] Sourc	e height			100	[m] Point of compliance
120	[m] Sourc	e width			25	[m] Thickness of the aquifer
Browse	select the input txt fil	e:			90/365	[m/day] Groundwater velocity
	- decimal separator:	point (not comma)	1.5 COlumns		1.0e-4	[1/day] First order degradation rate
	 1st column = Time [2nd column = Wate 	years] r flux [m3/y]			0.25	[-] Porosity
N.11	- 3rd column = Conce	entration [mg/L]	ald D single		1.0	[m] Longitudinal dispersivity
init\EX_1_S	ource_inputs_Affalo	enace∖⊏xamples\Aff IB_SingleUnite_vary	aio-e single ingQ_varying0	C.txt	0.01	[m] Transversal dispersivity
					0.005	[m] Vertical dispersivity
Chock	that the input time	corios aro corroct			4	[-] Retardation factor
If the fo	llowing graphs are	blank the input file is	s wrong.		L	
	Q [m3/y]	Source cor	ncentration [m	ig/L]		
0000	200 400 Fime [year]	40 20 0 0 22 Tim	100 400 ne [year]			
S ave all th Choose the f The file is sa	e inputs (option file name (The inpu ved in the same fol	nal) t time series is not s der as the input time	aved). e series file	Outpu Choos The ou	uts e Output file name itput is saved in th	e. ne same folder as the input file RUN
Inputs	CASE	000	Save	Out	CASE	E_CCC .txt

FIGURE 14. Screenshot for the step by step tutorial of model "Affald-B single unit". The input time series are properly displayed and the user has called the case study "CASE_AAA".

- 12) The user can save the inputs (this is optional) by pressing the "Save" button. Saved inputs can be loaded with the "Load model inputs" button.
- 13) The user can change the input parameters (remember to use a dot as decimal separator and not a comma).
- 14) Run the model by pressing the button 'RUN' and wait until the results pop-up. The result window that pops up is shown in the following.

FIGURE 15. Example of a result window of Affald-B single unit.

15) Reading the results from the pop-up window.

The top 3 graphs show the water discharge Q, the concentration and the contaminant mass discharge at the source.

The 2 bottom graphs show the concentration over a 2 m well screen at the point of compliance and the contaminant mass discharge over an infinite plane (perpendicular to the groundwater flow direction) located at the point of compliance. The concentration at the POC is always computed using both a 3D model and a 1D model. The model giving the highest concentrations is the one to be used. The idea is that the 3D model is suitable for thick aquifers whereas in the case of thin aquifers the 1D model is more accurate (because the 3D model is designed for aquifers of infinite extent). Further details can be found in the main report.

At the bottom of the result window there are 2 sentences reporting the maximum concentration at the point of compliance and the 500 year accumulated contaminant mass discharge.

16) A result file called "Out_CASE_AAA.txt" is automatically created in the same folder as the input time series file. The output file contains all the output time series and it is shown in the following (the tab delimited .txt file can also be opened in Excel). Each column of the output file include a time series:

Column 1. PoC_t_3D. [y]. Time of the 3D model outputs of the horizontal transport. Column 2. PoC_c_3D. [mg/L]. Concentration at the Point of compliance from the 3D model (the related time is in column 1).

Column 3. PoC_t_1D . [y]. Time of the 1D model outputs of the horizontal transport. Column 4. PoC_c_1D . [mg/L]. Concentration at the Point of compliance from the 1D model (the related time is in column 3).

Column 5. PoC_Mass_1D. [kg/y]. Mass discharge at a plane at the Point of compliance distance from the 1D model (the related time is in column 3).

File Edit Format View Help Affald-B. Single unit. This .txt file is tab delimeted and can be opened in Excel. The values -999.0000 are to be ignored Simulation time: 9.0019 seconds Input file: C:\Users\lulo\Desktop\User_Interface\Examples\Affald-B single unit\Ex_1. The maximum concentration at the point of compliance is 26.491125 mg/L (from the 3D Lz [m] 2.000000 POC [m] 20.00000 B 2.000000 Vg [m] 100.000000 POC [m] 0.00100 n [-] 0.250000 alphat [m] 0.001000 alphat [m] 0.000000 alphat [m] 0.000000 alphat [m] 0.000000 alphat [m] 0.0000000 1976.1 0.000000000 1980.4 2.7959252524 1979.1 0.017431306 1982.4 2.500214135 1978.1 0.0000000000 1980.4 2.79592525252 151.0153041535 1978.1 0.0000000000 1986.4 2.3075265151.01 135.253261886 1983.1 2	Out CASE CCC. Natural			
Price call roomat View Heip Miffald-B. Single unit. This .txt file is tab delimeted and can be opened in Excel. The values -999.0000 are to be ignored Simulation time: 9.0019 seconds Input file: C:\Users\lulo\Desktop\User_Interface\Examples\Affald-B single unit\EX_1. The maximum concentration at the point of compliance is 26.491125 mg/L (from the 3D Lz [m] 2.000000 by [m] 100.000000 B [m] 2.500000 u [m] 0.246575 k [1/day] 0.0246575 k [1/day] 0.030000 alphat m] 0.000000 alphat [m] 0.00000000 1976.0 0.0000000000 0.0000000000 1976.1 0.0000000000 1977.1 0.00000000000 1984.4 1978.1 0.00000000000 1985.4 1978.1 0.00000000000 1985.4 1978.1 0.00000000000000000000000000000000000	Out_CASE_CCC - Notepad			
Allalo-5. Single unit. This .tx file is tab delimeted and can be opened in Excel. The values -999.0000 are to be ignored Simulation time: 9.0019 seconds Input file: C:Users/lulo/Desktop/User_Interface/Examples/Affald-B single unit/Ex_1. The maximum concentration at the point of compliance is 26.491125 mg/L (from the 3D Lz [m] 2.000000 POC [m] 100.000000 B [m] 25.000000 alphal [m] 0.010000 alphal [m] 0.010000 alphal [m] 0.000000 POC_t_3D POC_C_3D POC_t_1D POC_c_1D POC_Mass_1D [y] [mg/L] [y] [mg/y] [Kg/y] 1976.0 0.000000000 1980.4 0.000000000 0.000000000 1977.1 0.000000000 1980.4 2.79522524 188.7249545353 1979.1 0.171431306 1982.4 2.6433657100 178.4406554263 1979.1 0.171431306 1982.4 2.030721361 139.250866524 1981.1 23.9081564974 1984.4 2.2372637652 151.0153041537 1982.1 25.04911253266 1984.4 2.037521361 135.2532691886 1984.1 23.9081564974 1984.4 2.037521361 135.2532691874 1985.1 12.3.9057374657 1984.4 1.796057333 121.2344370671 1985.1 12.2.6752310899 1988.4 1.70053723 11.2344370674 1985.1 12.2.7552310899 1988.4 1.70053733 122.39257295 1985.1 12.2.7552310899 1988.4 1.79005333 124.38275299 1985.1 12.2.7552310899 1988.4 1.79005333 124.38275299 1985.1 12.2.7552310899 1988.4 1.79005333 124.38275299 1985.1 12.2.7552310899 1988.4 1.79005333 124.3827759 1985.1 12.2.7552310899 1988.4 1.79005333 124.3827759 1985.1 12.2.7552310899 1988.4 1.79005333 124.3827759 1985.1 12.2.7552310899 1988.4 1.79005333 124.3830784 1987.1 10.232735266 198.4 1.79005333 124.3830784 1987.1 10.232735266 198.4 1.790053832 114.84380784 1987.1 12.343320776 199.4 1.612018634 108.7561257776 1983.1 18.21275190201 1992.4 1.4455227603 97.64028613974 1985.1 13.4740138361 1995.4 1.232495473497	File Edit Format View Help	p		
Simulation time: 9.0019 seconds Input file: C:\Users\lulo\Desktop\User_Interface\Examples\Affald-B single unit\Ex_1. The maximum concentration at the point of compliance is 26.491125 mg/L (from the 3D Lz [m] 2.000000 POC [m] 100.000000 B [m] 25.000000 u [m/y] 0.246575 k [1/day] 0.000100 n [-] 0.250000 alphat [m] 0.005000 alphat [m] 0.005000 POC_t_3D POC_c_3D POC_t_1D POC_c_1D POC_Mass_1D [y] [mg/L] [y] [mg/y] [Kg/y] 1976.0 0.000000000 1980.4 0.000000000 0.000000000 1976.1 0.000000000 1980.4 2.795925524 188.7249545353 1978.1 0.0000000000 1980.4 2.795925524 188.7249545353 1978.1 0.0000000000 1980.4 2.795925524 188.7249545353 1978.1 0.000000000000 1980.4 2.7959255254 188.7249545353 1978.1 0.0000000000 1980.4 2.795925525 151.0153041535 1982.1 26.4911254326 1983.4 2.3647550911 159.6209686524 1983.1 23.9081564974 1984.4 2.2372637652 151.0153041535 1985.1 22.3657474577 1987.4 1.8968775001 128.0392373295 1985.1 22.6557374657 1987.4 1.896875901 128.0392373295 1985.1 22.6575374657 1987.4 1.63264912671 1986.1 21.4632502866 1989.4 1.7009538234 114.8143830784 1987.1 20.3143262973 1990.4 1.61204834 108.7561257776 1986.1 21.4632502866 1989.4 1.7009538234 114.8143830784 1987.1 20.3143262973 1990.4 1.612048634 408.7561257776 1986.1 21.4632502866 1989.4 1.7009538234 114.8143830784 1987.1 20.3143262973 1990.4 1.6120491262 13.03081510173 1989.1 18.232738726 1991.4 1.522495475 397. 128.31839594397 *	This .txt file is tab d The values -999.0000 ar	delimeted and can be open re to be ignored	ed in Excel.	
The maximum concentration at the point of compliance is 26.491125 mg/L (from the 3D LZ [m] 2.000000 POC [m] 100.000000 B [m] 25.000000 u [m/y] 0.246575 k [1/day] 0.000100 alphal [m] 0.010000 alphal [m] 0.010000 alphax [m] 0.005000 POC_t_3D POC_t_3D POC_C_3D POC_t_D POC_c_1D POC_Mass_1D [y] [mg/L] [y] [mg/Y] [Kg/Y] 1976.0 0.000000000 1980.4 0.000000000 0.000000000 1976.1 0.000000000 1980.4 2.795925524 188.7249545353 1978.1 0.000000000 1980.4 2.795925524 188.7249545353 1978.1 0.0000000000 1982.4 2.50021413 168.7514454111 1980.1 8.8068429156 1983.4 2.3647550911 159.6209886524 1981.1 23.9081564974 1984.4 2.037521361 135.2332691886 1984.1 23.9081564974 1984.4 2.037521361 135.2332691886 1984.1 23.9081564974 1984.4 1.796067333 121.2344370671 1985.1 22.6752310899 1988.4 1.790057334 112.344370671 1985.1 12.23.9657374657 1984.4 1.6112018634 108.7561257776 1985.1 19.232752561 1995.4 1.6112018634 108.7561257776 1985.1 19.232752561 1994.4 1.62491126 139.2372299 1985.1 22.6752310899 1988.4 1.790057333 121.2344370671 1985.1 19.232752561 1995.4 1.6112018634 108.7561257776 1985.1 19.2327525107 1994.4 1.6112018634 108.7561257776 1985.1 19.2327525107 1994.4 1.232954444 87.7303872599 1985.1 15.4740139836 1995.4 1.2323549547 1985.1 15.4740139836 1995.4 1.23243549547 1985.1 15.4740139836 1995.4 1.23243549547 1985.1 15.4740139836 1995.4 1.23243549547 1985.1 15.4740139836 1995.4 1.23243549547 1985.1 15.4740139836 1995.4 1.2343549547 1985.1 15.4740139836 1995.4 1.23243549547 1985.1 15.4740139836 1995.4 1.232549547 1985.1 15.4740139836 1995.4 1.2325549547 1985.1 15.4740139836 1995.4	Simulation time: 9.0019 Input file: C:\Users\lu	9 seconds Jlo\Desktop\User_Interface	e\Examples\Affal	d-B single unit\EX_1_
Lz [m] 2.00000 Ly [m] 120.00000 POC [m] 120.00000 B [m] 25.000000 u [m/y] 0.246575 k [1/day] 0.000100 alphat [m] 0.010000 alphat [m] 0.010000 alphat [m] 0.005000 POC_t_3D POC_C_3D POC_t_1D POC_c_1D POC_Mass_1D [y] [mg/L] [y] [mg/y] [kg/y] 1976.0 0.000000000 1980.4 0.000000000 0.000000000 1976.1 0.000000000 1980.4 2.79922524 188.7249545353 1978.1 0.000000000 1980.4 2.79922524 188.7249545353 1978.1 0.000000000 1980.4 2.79922524 188.7249545353 1978.1 0.0000000000 1980.4 2.79922524 188.7249545353 1978.1 0.0000000000 1980.4 2.799225254 188.7249545353 1978.1 0.0000000000 1980.4 2.799225254 188.7249545353 1978.1 0.171431306 1982.4 2.500214135 168.7514454111 1980.1 8.8068429156 1983.4 2.3647550911 159.6209686524 1983.1 22.9657474657 1987.4 1.8968775901 128.0392373295 1985.1 22.6752310899 1988.4 1.796067333 121.2344370671 1986.1 21.463250266 1983.4 1.700953823 41.4.8413830784 1987.1 20.3143262973 1990.4 1.6112018634 108.7561257776 1988.1 19.3227352107 1991.4 1.5264911262 133.0381510173 1989.1 18.21275190201 1992.4 1.4465227603 97.640286134920 1992.1 15.4740139361 1995.4 1.239459457 1985.1 15.4740139366 1985.4 1.7301645942 1992.1 15.4740139366 1995.4 1.239459457 1985.1 15.4740139366 1995.4 1.2394594577 1985.1 15.4740139366 1995.4 1.239459457 1992.1 15.4740139366 1995.4 1.239459457 1992.1 15.4740139367 1995.4 1.239459457 1992.1 15.4740139367 1995.4 1.239459457 1992.1 15.4740139367 1995.4 1.239459457 1992.1 15.4740139366 1995.4 1.239459457 1992.1 15.4740139366 1995.4 1.239459457 1992.1 15.4740139367 1995.4 1.2395459457 1992.1 15.4740139367 1995.4 1.2395459457 1995.1 15.4740139367 1995.4 1.2395459457 1995.1 15.4740139	The maximum concentrati	ion at the point of compl	iance is 26.4911	25 mg/L (from the 3D
Poc_t_3D Poc_c_3D Poc_t_1D Poc_c_1D Poc_c_1D Poc_Mass_1D [y] [mg/L] [y] [mg/Y] [kg/Y] [kg/Y] [kg/Y] 1976.0 0.0000000000 1976.0 0.000000000 0.000000000 1976.1 0.000000000 0.000000000 1977.1 0.0000000000 1980.4 2.0959252524 188.749345353 1978.1 0.0000000000 188.4 2.643567100 178.4406854263 1979.1 0.171431306 1982.4 2.500214135 168.7514454111 1980.1 23.9681564974 1984.4 2.23727637652 151.0153041535 1982.1 26.4911254326 1985.4 2.1170764723 142.9026618774 1984.4 1332.532691886 1984.1 23.965174657 1987.4 1.8968775901 1332.532691886 1984.4 1332.532691886 1985.1 22.6752310899 1984.4 1.709538234 114.8143830784 1987.1 198.61257776 1986.1 19.2327358726 1991.4 1.5264911262 103.0381510173 1988.1 19.2327352017	Lz [m] Ly [m] POC [m] B [m] u [m/y] k [1/day] n [-] alphat [m] alphat [m] R [-]	2.000000 120.00000 100.000000 25.000000 0.246575 0.000100 0.250000 1.00000 0.010000 0.010000 0.005000 4.000000		
Ln1, Col1	Poc_t_3D Poc_c_3 [y] [mg/L] [y] [y6:0 0.00000000 1976:1 0.00000000 1977:1 0.00000000 1977:1 0.00000000 1977:1 0.00000000 1977:1 0.00000000 1978:1 0.000008664 1980:1 8.8068429156 1981:1 23.9081564974 1982:1 26.4911254326 1984:1 23.9657474657 1985:1 22.6752310899 1986:1 21.4632502866 1987:1 20.3143262973 1988:1 19.232738726 1989:1 18.2175190201 1990:1 16.3598491393 1992:1 15.4740139836	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PoC_c_1D 0.000000000 0.00000000 188.7249545353 178.4406854263 178.4406854263 178.620968654263 142.9026618774 135.2532691886 128.0392373295 121.2344370671 114.8143830784 108.7561257776 103.0381510173 97.640286310472 92.5436134920 87.7303872959 83.1839594397	POC_Mass_1D
Ln 1, Col 1				
				Ln 1, Col 1

FIGURE 16. Example of an output .txt file from the model "Affald-B single unit".

9. Affald-B multiple units

The model "Affald-B multiple units" (Figure 2) can be used to simulate concentration and mass discharge downstream a landfill made of several units that are partially submerged in the aquifer (the bottom of the landfill is below the top of the aquifer).

The interface of the model "Affald-B multiple units" is shown in the following figure. The user has different options (Back to the main menu; Save all the inputs; Load model inputs).

<< Back to	the main menu	Load model inputs		
Source in	puts			ansport parameters
3 🔻 Seleo	ct the number of differen	t units of the landfill	10	[m] Thickness of the aquifer
2; 4;	2.5 [m] Source	height. Lz1; Lz2; etc.	100/365	[m/day] Groundwater velocity
100; 16	60; 140 [m] Source	width. Ly1; Ly2; etc.	1.0e-4	[1/day] First order degradation rate
100: 25	i0: 200 [m] Point o	f compliance	0.25	[-] Porosity
Coloct the m	umber of units first		1.0	[m] Longitudinal dispersivity
ind then loa	d the time series:	Load the input time series	0.01	[m] Transversal dispersivity
:\xxxx\inpu	ıt_file.txt		0.005	[m] Vertical dispersivity
			2.5	[-] Retardation factor
Specify the u lifferent agg	units overlapping in the regated plumes. Each u	groundwater flow direction creating nit must be entered at least once.]	
Specify the u different aggr Plume 1 Plume 2 Plume 3 Plume 4 Plume 5	units overlapping in the pregated plumes. Each u	groundwater flow direction creating nit must be entered at least once.]	
Specify the u lifferent aggu Plume 1 Plume 2 Plume 3 Plume 4 Plume 5 Plume 6	units overlapping in the pregated plumes. Each u	groundwater flow direction creating nit must be entered at least once.]	
Specify the u lifferent aggr Plume 1 Plume 2 Plume 3 Plume 4 Plume 5 Plume 6 Plume 6 Save all the Save all the Save file is sa	units overlapping in the g regated plumes. Each u 2 1 3 we inputs (optional) file name (The input tim aved in the same folder a	groundwater flow direction creating nit must be entered at least once. e series is not saved). as the input time series file	utputs oose Output file na e output is saved ir	me. I the same folder as the input file

FIGURE 17. Screenshot of the model "Affald-B multiple units".

First of all the user must enter the right number of units to be simulated using the drop-down menu in the "Source inputs" window. Then the fields "Source height", "Source width" and "Point of compliance" must be entered. Note that there must be the same number of entries as the number of units (i.e. if there are 4 units then there must be 4 numbers in the field "Source length" and in the other fields). The number of entries must be separated by a semicolon. For instance, the landfill of Faaborg (one of the examples included Miljøstyrelsen, 2018) has 2 different units and the following figure shows how to input the 2 unit geometries, distances to the PoC, etc.

UTM 32 ETRS 59: X = 579,859 m, Y = 6,106.305 m	Affald_B_multiple		
a the second	< Back to the main menu Load model inputs		
	Source inputs	Horizontal tran	sport parameters
	2 Select the number of different units of the landfill	10	[m] Thickness of the aquifer
	2.4; 3.4 [m] Source height. Lz1; Lz2; etc.	1/365	[m/day] Groundwater velocity
	156; 109 [m] Source width. Ly1; Ly2; etc.	0	[1/day] First order degradation rate
	100: 127 [m] Point of compliance	0.3	[-] Porosity
	Calast the number of units first	1.0	[m] Longitudinal dispersivity
	and then load the time series:	0.01	[m] Transversal dispersivity
	C:\xxxx\input_file.txt	0.005	[m] Vertical dispersivity
		5	[-] Retardation factor
	Specify the units overlapping in the groundwater flow direction creating different aggregated plumes. Each unit must be entered at least once. Plume 1 1 Plume 2 2 Plume 2 Plume 4 Plume 5 Plume 6 Save all the inputs (optional) Choose the file name (The input time series is not saved). The file is saved in the same folder as the input time series file Inputs_CaseStudyXX_compoundXX Save Ou	tputs ose Output file name output is saved in th rtCaseStudyXX	e same folder as the input file compoundXX .txt

FIGURE 18. Example of how to enter the 2 units of the landfill of Faaborg. The input data are provided together with the model interface and are located in the folder "Input_files_examples_for_the_tutorials"

Now the user must enter the input time series by pressing the "Browse" button within the "Source inputs" box. A new window will open where the user needs to select the input .txt file. The input file must be created correctly according to the instructions given in the section "How to create the input .txt file".

Afterwards the user needs to specify how the different source units overlap in the groundwater flow direction. A part of Section 7 shows how to do it.

Once the input time series is included then the user can save (this is optional) the input parameters. When all the input parameters are given the user can select the result file name and run the model by clicking on the "RUN" button. The model will run and automatically pop-up a result window and write the output .txt file in the same location as the selected .txt input file.

d. Affald-B multiple units. Step by step tutorial

In the following we show a step by step example of how to use the model:

- 11) Open the "Affald-B multiple unit" window.
- 12) Under the field "Select the number of different units of the landfill" choose "3".
- 13) Click on "Load model inputs" and select the file "EX_2_inputs_AffaldB_MultipleUnites_3_Units". This example contains 3 different units (several examples are provided and the user can choose among them).
- 14) Click on "Load the input time series" and load the provided input file "EX_2_Source_inputs_AffaldB_MultipleUnites_3_Units.txt".
- 15) Let us call the case study "CASE_DDD" as shown in the following figure.

Affald R multiple	
< Back to the main menu Load model inputs	
Source inputs	Horizontal transport parameters
3 Select the number of different units of the landfill	10 [m] Thickness of the aquifer
2; 4; 2.5 [m] Source height. Lz1; Lz2; etc.	100/365 [m/day] Groundwater velocity
100; 160; 140 [m] Source width. Ly1; Ly2; etc.	1.0e-4 [1/day] First order degradation rate
100; 250; 200 [m] Point of compliance	0.25 [-] Porosity
Select the number of units first	1.0 [m] Longitudinal dispersivity
and then load the time series:	0.01 [m] Transversal dispersivity
C:\Users\lulo\Desktop\User_Interface	0.005 [m] Vertical dispersivity
units\EX_2_Source_inputs_AffaldA_MultipleUnites_3_Units.txt	2.5 [-] Retardation factor
Specify the units overlapping in the groundwater flow direction creatin different aggregated plumes. Each unit must be entered at least once Plume 1 1;2 Plume 2 3 Plume 3 None Plume 4 Plume 5 Plume 6	ig 9.
Save all the inputs (optional) O Choose the file name (The input time series is not saved). C The file is saved in the same folder as the input time series file Th Inputs CASE_DDD	utputs hoose Output file name. he output is saved in the same folder as the input file CASE_DDD .txt .txt

FIGURE 19. Screenshot for the step by step tutorial of model "Affald-B multiple units". The user has called the case study "CASE_DDD".

- 16) The user can save the inputs (this is optional) by pressing the "Save" button. Saved inputs can then be loaded with the "Load model inputs" button.
- 17) The user can change the input parameters (remember to use a dot as decimal separator and not a comma).
- 18) Run the model by pressing the button 'RUN' and wait until the results pop-up. The result window that pops up is shown in the following.

FIGURE 20. Example of a result window of "Affald-B multiple units".

19) Reading the results from the pop-up window.

The top graph shows the mass discharge in the aquifer at an infinite plane located at the Point of compliance. Both the total mass discharge and the contribution from each unit are shown.

The bottom graph shows the highest concentration (over a 2 m long screen) in the aquifer. Both the total concentration and the contribution from each unit are shown. Nevertheless, in this case the maximum concentrations are given by the superposition of Unit 1 and Unit 2.

Note that the total mass discharge always results from all the units contributions, whereas the maximum concentrations can result from fewer units.

At the bottom of the result window there are 3 sentences reporting the maximum concentration at the point of compliance, the units that produce the maximum concentrations and the 500 year accumulated contaminant mass discharge.

20) A result file called "Out_CASE_DDD.txt" is automatically created in the same folder as the input time series file. The output file contains all the output time series and it is shown in the following (the file can also be opened in Excel). The output time series (mass discharge and concentration) for each unit are found by scrolling down in the same file.

Out CASE DDD - Notepad		
File Edit Format View Hel	n	
Affald-B. Multiple unit This .txt file is tab o The values -999.0000 ar	' :s. lelimeted and can be opened in :e to be ignored	n Excel.
Simulation time: 60.819 Input file: C:\Users\lu	02 seconds 10\Desktop\User_Interface\Exa	amples\Affald-1
The maximum concentrati	on at the point of compliance	e is 237.595594
LZ [m] Ly [m] POC [m/y] B [m] u [1/day] k [-] n [-] alphal [m] alphat [m] alphat [m] R [1/day]	$\begin{array}{c} 2; \ 4; \ 2.5\\ 100; \ 160; \ 140\\ 100; \ 250; \ 200\\ 10\\ 100/365\\ 1.0e-4\\ 0.25\\ 1.0\\ 0.01\\ 0.005\\ 2.5 \end{array}$	
time Total mass [y] [kg/y] [mg/L] 1940.0 0.000000000 1940.3 0.0000000000 1940.5 0.0000000000 1941.0 0.0000000000 1941.3 0.0000000000 1941.4 0.0000000000 1941.5 0.0000000000 1942.0 0.0000000000 1942.3 0.0000000000 1942.3 2855.9709921712 1942.8 2721.7118836083 1943.0 2587.4527750454	Total concentration 0.000000000 0.000000000 0.000000000 0.0000000428 0.000001064 0.0376486310 0.0937372180 5.9731683936 14.7048490003 43.5591487850 82.2694253100 108.3391405938 128.2175605759	
•		4
		Ln 1, Col 1

FIGURE 21. Example of an output .txt file from the model "Affald-B mulitple units".

10. How to create the input .txt file

The models require the input time series of water discharge and contaminant concentration from the landfill that are obtained with the Kildestyrkemodel (2017). The models Affald-A and Affald-B require a .txt file with these time series. The .txt file must be created respecting the following requirements:

- There must be 2 heading lines and 3 columns for each contaminant unit
- The decimal separator must be a dot (not a comma)
- The 1st column is the time [years]
- The 2nd column is the water discharge [m³/y]
- The 3rd column is the concentration [mg/L]
- The input time series must be 500-year long and with 1 year time step (501 lines in total)

The user can open with Excel the tab delimited input .txt files provided with the tutorials and see how the different time series are entered.

The following steps show an example of how to create the input file:

1) Copy the output time series of Kildestyrkemodel into a new Excel spreadsheets following the requirements stated above. The following figure shows 2 examples of how a spreadsheet should look like in the case of a single unit source and in the case of multiple units.

(a)						(b)										
🔟 🖵 🌱 = (° =) =						Input_data - Microsoft Excel										
File Home Insert Page Layout							File Home Insert Page Layout Formulas Data Review View Developer Add-Ins									
						-		Calibri	× 11	τ Δ [*] Α	. = _	- ×2	3	Seneral	-	
		Calibri	* 11	• A			- -								1.0.00	<u>≣≦</u> ≸
Pa	ste	BIU	•	3 - A		Pa	ste 🛷	B / U	*	<u>⊘</u> - <u>A</u>	* = =		• <u>a</u> • •	\$-%,	.00 -00	Formatting
CU.			French			Clip	board 🕞		Font		Gi A	lignment	- Gi	Numbe	r G	
Clip	board 1		Font	-			O25		· (*	<i>f</i> _x 100						
	J23	•	(f _x			А	В	С	D	E	F	G	Н	I.	J
	Α	В	С	D		1	Unit 1	Unit 1	Unit 1	Unit 2	Unit 2	Unit 2	Unit 3	Unit 3	Unit 3	Unit 4
1	Unit 1					2	year	Q m3/y	mg/l	year	Q m3/y	mg/l	year	Q m3/y	mg/l	year
2	year	Q m3/y	mg/I			3	1973	19809	2950	196	7 19809	8.099559	1967	11766	1490.613	2016
3	. 1973	5000	2950			4	1974	19809	2746.281	1968	3 19809	6.724223	1968	11766	1354.033	2017
4	1974	5000	2746.281			5	1975	19809	2557.295	1969	9 19809	5.586102	1969	11766	1230.4	2018
5	1975	5000	2557,295			6	1976	19809	2381.932	1970	19809	4.643666	1970	11/66	1118.447	2019
6	1976	5000	2381.932			/	1977	19809	2219.168	197.	19809	3.862/59	1971	11766	025 142	2020
7	1977	5000	2219 168			9	1979	19809	1927 735	1973	2 19809	2 678068	1972	11766	841 8451	2021
8	1978	5000	2068 059			10	1980	19809	1797.393	1974	1 19809	2.232068	1974	11766	766.3127	2023
9	1979	5000	1927 735			11	1981	19809	1676.293	1975	5 19809	1.861551	1975	11766	697.7984	2024
10	1980	5000	1797 393			12	1982	19809	1563.751	1976	5 19809	1.553543	1976	11766	635.6289	2025
11	1991	5000	1676 292			13	1983	19809	1459.136	197	7 19809	1.297334	1977	11766	579.1974	2026
12	1001	5000	1562 751			14	1984	19809	1361.865	1978	3 19809	1.084075	1978	11766	527.9569	2027
12	1002	5000	1450 126			15	1985	19809	1271.4	1979	9 19809	0.906455	1979	11766	481.4141	2028
13	1983	5000	1261.005			16	1986	19809	1187 244	1980	19809	0 758421	1980	11766	439 124	2029
14	1984	5000	1301.805													
15	1985	5000	12/1.4													
16	1986	5000	1187.244													
17	1987	5000	1108.937													
10	1000	5000	1026 055													

FIGURE 22. Examples of how to create the input time series for the models Affald-A and Affald-B in Excel. (a) The case of a single unit source. (b) The case of multiple unit sources.

1) Save the Excel file as "Text (Tab delimited)". See the following figure.

Exc	el Workbook				
🔄 🔾 🗢 🚽 🖉 🖉 🖓	el Macro-Enabled Workbook				
Exc	el Binary Workbook				
Organize Ne Exc	el 97-2003 Workbook				
XIV	IL Data				
Microsoft Excel Wa	gie File web Page				
Eve	el Template				
A Exc	el Macro-Enabled Template				
Y Favorites Exc	el 97-2003 Template				
🐌 Downloads 🛛 Te	t (Tab delimited)				
Secent Places Un	icode Text				
XM	IL Spreadsheet 2003				
Mie Desktop Mie	crosoft Excel 5.0/95 Workbook				
CS	V (Comma delimited)				
Libraries	matted Text (Space delimited)				
Te					
	(Macintosh)				
Computer CS	V (MS-DOS)				
🟭 Default (C:) DIF	(Data Interchange Format)				
🖵 Iulo (\\env-da SYI	K (Symbolic Link)				
	el Add-In				
Exc	el 97-2003 Add-In				
I emporary (\\ PD	F				
File name: AP	S Document				
Op	enDocument spreadsneet				
Save as type: Te	kt (Tab delimited)				
Authors: Luc	a Locatelli	Tags: Add a tag	Title	: Add a title	
Hide Folders			Tools 💌	Save	Cancel

FIGURE 23. Example of how to save the Excel file as "Text (Tab delimited)".

2) Check that the .txt file looks like the one shown in the following figure.

(a)			(b)								
(They a			EX_2	_Source_inputs_AffaldA_M	ultipleUnits_3_Units - N	lotepad					
EX_4	Source_input	s_AffaldA_SingleU	File E	dit Format View Help	, ,						
File Ed	lit Format	View Help	Ųnit 1	L Unit 1 Unit 1	Unit 2 Unit 2	Unit 2	Unit 3 Unit 3	Unit_3			
unda a			Ar 1940	Q m3/år mg/l 17424 25123	Ar Q m3/å	r mg/l	Ar Qm3/ā 22494 450	r mg/l 1959 15060	22/0/	590	
Unit 1	/	(7	1941	17424.35133	138.0332209	1960	15060.22494	264.9932899	1960	15060.22494	272.8590
year	Q m3/y	mg/I	1942	17424.35133	113.4348869	1961	15060.22494	161.1136697	1961	15060.22494	134.0292
1973	5000	2950	1943	17424.35133	94.30538331	1962	15060.22494	101.5380997	1962	15060.22494	71.32805
1974	5000	2746.28114	1944	17424.33133	67 36182923	1965	15060.22494	45 83861321	1965	15060.22494	28 14637
1975	5000	2557, 29528	1946	17424.35133	57.82555112	1965	15060.22494	33.16220227	1965	15060.22494	21.24435
1076	5000	2381 03100	1947	17424.35133	50.12891477	1966	15060.22494	25.30082195	1966	15060.22494	17.74422
1077	5000	2010 16770	1948	1/424.35133	43.86685/29	1967	15060.22494	20.33684/66	196/	15060.22494	15.92058
19//	5000	2219.10//2	1950	17424.35133	34,49488095	1969	15060.22494	15.06274745	1969	15060.22494	14.40888
1978	5000	2068.0588	1951	17424.35133	30.9722865	1970	15060.22494	13.67801921	1970	15060.22494	14.10658
19/9	5000	1927.73492	1952	17424.35133	28.02653758	1971	15060.22494	12.74340081	1971	15060.22494	13.93139
1980	5000	1797.39331	1953	17424.35133	25.54912996	1972	15060.22494	12.102//91/	1972	15060.22494	13.82693
1981	5000	1676.29326	1955	17424.35133	21.67571695	1974	15060.22494	11.34234738	1974	15060.22494	13.72183
1982	5000	1563 75115	1956	17424.35133	20.15821639	1975	15060.22494	11.11698404	1975	15060.22494	13.69483
1083	5000	1450 13502	1957	17424.35133	18.85896656	1976	2140.561618	73.91775776	1976	2140.561618	96.04135
1084	5000	1761 06400	1950	17424.33133	16 7820925	1977	2140.561618	73 87023484	1977	2140.561618	95 98478
1904	5000	1001.00400	1960	17424.35133	15.95295118	1979	2140.561618	73.84675119	1979	2140.561618	95.95654
1985	5000	12/1.39984	1961	17424.35133	15.23661282	1980	2140.561618	73.82344747	1980	2140.561618	95.92833
1986	5000	1187.24362	1962	1105.589598	39./068154/	1981	2140.561618	/3.8003198/	1981	2140.561618	95.90016
1987	5000	1108.93681	1964	1105.589598	39.67439198	1983	2140.561618	73.75457813	1983	2140.561618	95.84389
1988	5000	1036.05478	1965	1105.589598	39.65826664	1984	2140.561618	73.73195678	1984	2140.561618	95.81580
1989	5000	968, 204959	1966	1105.589598	39.6421986	1985	2140.561618	73.7094971	1985	2140.561618	95.78773
1000	5000	005 024327	1968	1105 589598	39.02018/05	1980	2140.561618	73.66504924	1980	2140.501018	95.75970
1001	5000	946 177112	1969	1105.589598	39.59433611	1988	2140.561618	73.64305449	1988	2140.561618	95.70371
1991	5000	040.1//113	1970	1105.589598	39.57849509	1989	2140.561618	73.6212083	1989	2140.561618	95.67575
1992	5000	/91.352668	1971	1105.589598	39.56271026	1990	2140.561618	73.59950756	1990	2140.561618	95.64781
1993	5000	740.263518	1072	1105 580508	39.34098143	1002	2140.301018	73.37/94923	1002	2140.001018	93.01991

FIGURE 24. Examples of how the .txt input file should look like. (a) The case of a single unit source. (b) The case of multiple unit sources.

11. Frequently asked questions.

Here is a list of questions/issues/discussions that the users might find useful.

1) QUESTION. The output concentration is not smooth. Instead, it is made of several small steps like the one shown below.

FIGURE 25. Examples of an output concentration that is not smooth.

ANSWER. The program in order to run fast discretizes the input source functions. It can happen in some cases that the input function discretization is somewhat rough and the output looks like the one in the figure. The error introduced by the rough discretization is generally insignificant.

2) QUESTION. The output concentration from the 3D model has a flat peak like the one shown in the figure below.

FIGURE 26. Examples of an output concentration from the 3D model that shows a flat peak.

ANSWER. The 3D model assumes that the input water from the landfill do not affect the water balance of the aquifer (Nevertheless, landfills are generally large and can affect the water balance of an aquifer). Therefore, the model computes the concentrations in the aquifer excluding the dilution given by the additional water coming from the landfill. In some cases the model gives concentrations that are higher than the input concentrations and this is physically unacceptable. Concentrations in the aquifer that are higher than the input concentrations are excluded. The contaminant mass discharge in the aquifer is correct since it is computed using a different model. See the main report (DEPONIER RAPPORT 2017) for further details and discussion about the models.

3) QUESTION. How is it possible that the 1D model results in much lower concentrations compared to the 3D model?

ANSWER. The 1D model is based on different assumptions compared to the 3D model, i.e. it assumes that the contaminant is uniformly distributed over the depth of the aquifer. This assumption is valid only in the case of "thin" aquifers. Therefore if the aquifer is "thick" the 1D model can give much smaller concentrations compared to the 3D model. See the main report (Miljøstyrelsen, 2018) for further details and discussion about the models.

4) QUESTION. Why is the output concentration from the model constant as a function of the distance downstream the landfill? ANSWER. The user might experience that the output concentration of the 1D model does not change even if different PoC distances are entered (i.e. the concentration is the same at PoC=100m and PoC= 600m). This happens in the case of thin aquifers (1D model) and when there is no degradation. This is because the 1D model does not include dispersion. Conceptually, this is reasonable for landfills discharging in thin aquifers, in fact it will require very large distances before dispersion will have an effect and in most of the cases the PoC distances are relatively small.

References

- Udvikling af metodik til risikovurdering ved deponering af affald. Delopgave 2 Stoftransport i jord og grundvand: Retningslinjer for opstilling af numerisk model. Lizzi Andersen, Erik Aagaard Hansen, Ole Hjelmar, René Møller Rosendal, Steen Stentsøe. Miljøstyrelsen, Miljøprojekt nr. 2117, Oktober 2021
- GrundRisk Landfill. Transport of contaminants released from landfills a part of a risk assessment tool. Miljøstyrelsen, Environmental Project no. 2181, October 2021

The Danish Environmental Protection Agency Tolderlundsvej 5 DK - 5000 Odense C

www.mst.dk